

KENTUCKY TRANSPORTATION CENTER

RESILIENT MODULUS OF COMPACTED CRUSHED STONE AGGREGATE BASES

OUR MISSION

We provide services to the transportation community

through research, technology transfer and education. We create and participate in partnerships to promote safe and effective transportation systems.

OUR VALUES

Teamwork

Listening and communicating along with courtesy and respect for others.

Honesty and Ethical Behavior

Delivering the highest quality products and services.

Continuous Improvement In all that we do.

Resilient Modulus of Compacted Crushed Stone Aggregate Bases

by

Tommy C. Hopkins

Program Manager and Chief Research Engineer **Tony L. Beckham** *Research Geologist* **Charlie Sun** Senior Research Engineer

Kentucky Transportation Center College of Engineering University of Kentucky

in cooperation with the Kentucky Transportation Cabinet The Commonwealth of Kentucky and Federal Highway Administration

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, Kentucky Transportation Cabinet, nor the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

November 7, 2007

1. Report No.	2. Government Accession	3. Recipients catalog no		
KTC-05-27/SPR-229-01-1F	No.			
4. Title and Subtitle		5. Report Date		
Resilient Modulus of Compact	ed Crushed Stone	November 7, 2007		
Aggregate Bases				
88 8		6. Performing Organization Code		
7. Author(s)		8. Performing Organization Report		
Tommy C. Hopkins, Tony L. Beckl	ham, and Charlie Sun	No.		
		KTC-229-01		
9. Performing Organization Name an	nd Address	10. Work Unit No. (TRAIS)		
University of Kentucky Transportation	Center			
College of Engineering		11. Contracts or Grant No.		
176 Oliver Raymond Building		KYSPR-229-01		
Lexington, Kentucky 40506-0281				
12. Sponsoring Agency Code		13. Type of Report and Period		
Kentucky Transportation Cabinet		Covered		
200 Mero Street				
Frankfort, Ky 40622		14. Sponsoring Agency Code		
15. Supplementary Notes				

Prepared in cooperation with the Kentucky Transportation Cabinet and the United States Department of Transportation, Federal Highway Administration

16. Abstract

In recent years, the American Association of State Highway Transportation Officials (AASHTO) has recommended the use of resilient modulus for characterizing highway materials for pavement design. This recommendation evolved as result of a trend in pavement design of using mechanistic models. Although much progress has been made in recent years in developing mathematical, mechanistic pavement design models, results obtained from those models are only as good as the material parameters used in the models. Resilient modulus of aggregate bases is an important parameter in the mechanistic models. The main goal of this study was to establish a simple and efficient means of predicting the resilient modulus of different types of Kentucky crushed stone aggregate bases. To accomplish this purpose, resilient modulus tests were performed on several different types of aggregate bases commonly used in pavements in Kentucky. Specimens were remolded to simulate compaction conditions typically encountered in the field. Tests were performed on wet and dry specimens. The compacted specimens were 6 inches in diameter and 12 inches in height Crushed limestone base materials included Dense Graded Aggregate (DGA), and Crushed Stone Base (CSB). Number 57s, crushed river gravel, recycled concrete, and asphalt drainage blanket samples were submitted for testing by engineers of the Kentucky Transportation Cabinet.

A new mathematical resilient modulus model, developed in a previous study by researchers of the University of Kentucky Transportation Center (UKTC), was used to relate resilient modulus to any selected, or calculated, principal stresses in the aggregate base. This model improves the means of obtaining best data "fits" between resilient modulus and stresses. Furthermore, the resilient modulus can be predicted, using the UKTC resilient modulus model, when the stress condition and type of Kentucky base aggregate are known. Multiple regression analysis is used to obtain model coefficients, k_1 , k_2 , and k_3 , of the relationships between resilient modulus and confining and deviator stresses used in the testing procedure. Also, multiple regression analysis was performed using other models developed by the National Cooperative Highway Research Program (NCHRP Project 1-37A, 2001) and Uzan (1985) to obtain the model coefficient, k_1 , k_2 , and k_3 .

The resilient modulus data and the UKTC model, as well as models developed by NCHRP and Uzan, are readily available to design personnel of the Kentucky Transportation Cabinet. Computer software was developed in a client/server and Windows environment. This program is embedded in the Kentucky Geotechnical Database, which resides on a Cabinet server in Frankfort, Kentucky.

17. Key Words		18. Distribution Statement			
Highways, Resilient Modulus, Soils, Model, Design, Subgrade		Unlimited, with the approval of the			
		Kentucky Transportation Cabinet			
19. Security Classification (of this report) Unclassfied	20. Security Classification. (of this page) None	21. No. of Pages 89	22. Price		

Form DOT 1700.7 (8-72)

LIST OF FIGURES	vii
LIST OF TABLES	xi
EXECUTIVE SUMMARY	XV
INTRODUCTION	1
OBJECTIVES	3
SCOPE OF STUDY	3
BACKGROUND	4
SAMPLING AND GEOTECHNICAL PROPERTIES Bulk Samples Geotechnical Test Methods and Physical Properties Gradation and Dry Unit Weights	4 4 5 5
RESILIENT MODULUS TESTING Testing Equipment System Components Compaction of Aggregate Specimens Resilient Modulus Testing Protocol	15 15 15 17 17
REVIEW OF MATHEMATICAL MODELS FOR RELATING RESILIENT MODULUS AND STRESSES	18
TEST RESULTS AND ANALYSIS Multiple Correlation Analysis Resilient Modulus Test Data and Regression Coefficients of Models 3, 4, 5, and 6 Storage and Accessibility of Values of Resilient Modulus of Compacted Aggregates Variation of Resilient Modulus and Dry Density Repeatability of Resilient Modulus Testing Equipment. Synthetic Specimen of PVC No. 57 Aggregate	24 24 24 30 40 46 46 46 46
CONCLUSIONS	48
RECOMMENDATIONS	48
REFERENCES	50
Appendix A. Determination of Coefficients for Resilient Modulus Models Using Simple/Multiple Regression Analysis General Linear regression Determine the Coefficients for Resilient Modulus of Aggregate Materials	53 54 55

	Example of calculating k_1 , k_2 , and k_3 from the Test Data for UKTC Model (Model 5)	. 58
Appendix B.	Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens of Dense Graded Aggregates As	(1
	Received From the Producer	. 61
Appendix C.	Values of Testing Stresses and Resilient Modulus Recorded During	
	Lower Specification Limit Gradations of Dense Graded Aggregate	. 65
Appendix D.	Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens Representing the Upper, Center, and Lower	
	Specification Limit Gradations of Crushed Stone Base Aggregates	. 69
Appendix E.	Values of Testing Stresses and Resilient Modulus Recorded During Testing of Specimens of Number 57s Crushed Limestone As Received From the Producer and Compacted At Different Relative Densities	. 73
Appendix F.	Values of Testing Stresses and Resilient Modulus Recorded For Five Repeat Tests of Number 57s Crushed Limestone Compacted To the Same Relative Density	.77
Appendix G.	Values of Testing Stresses and Resilient Modulus Recorded During Testing of River Gravel Specimens Compacted to Different Relative Compaction Values	. 81
Appendix H.	Values of Testing Stresses and Resilient Modulus Recorded During Testing of Crushed Recycled Concrete Specimens Compacted to Different Relative Compaction Values	. 85
	1	

LIST OF FIGURES

Figure 1.	Definition of resilient modulus	2
Figure 2.	Relative subgrade stress levels for different pavement thickness	2
Figure 3.	Stress-strain hysteresis loop and resilient modulus determination	3
Figure 4.	Comparison of upper, center, and lower gradation curves to the gradation curve of	
	DGA sample "as received"	5
Figure 5.	Upper, center, and lower gradation curves of Crushed Stone Base (CSB) specimens	
	blended according to specifications	6
Figure 6.	Upper and lower specification gradation curves compared to the gradation curve	
	of No. 57 crushed limestone sample "as received"	6
Figure 7.	Gradation curve of crushed river gravel (quartz)	7
Figure 8.	Gradation curve of recycled concrete sample	7
Figure 9.	Moisture-density relationship of the DGA specimen as received from quarry	10
Figure 10.	Moisture-density relationship of the DGA specimen representing the upper	
	specification gradation	11
Figure 11.	Moisture-density relationship of the DGA specimen representing the center	
	specification gradation	11
Figure 12.	Moisture-density relationship of the upper gradation curve of the Crushed Stone	
	Base	11
Figure 13.	Moisture-density relationship of the center gradation curve of the Crushed	
	Stone Base	11
Figure 14.	Vibratory equipment and shaker table	12
Figure 15.	View of resilient modulus testing equipment	16
Figure 16.	View of aggregate specimen in the triaxial chamber	16
Figure 17.	View of loading actuator	16
Figure 18.	LVDTs and load cell are mounted inside triaxial cell	17
Figure 19.	Placing aggregate and compaction of a specimen in a split mold	17
Figure 20.	Haversine loading form	19
Figure 21.	Resilient modulus test in progress	19
Figure 22.	Example illustrating the three-dimensional plane of Model 5 and selected testing	
	stress points	24
Figure 23.	Comparisons of R ² -values obtained from regression analysis using	

	Models 3, 4, 5, and 6	25
Figure 24.	Regression plane of Model 4 and potential divergence problems at small stresses	28
Figure 25.	Regression plane of Model 6 and potential divergence problems at small stresses	28
Figure 26.	Regression plane of Model 5. As σ_d or σ_3 approaches zero, M_r converges	
	to the constant, k ₁	29
Figure 27.	Results of Regression analyses from Model 3 for DGA specimens blended	
	and remolded to gradation specification limits	29
Figure 28.	Results of regression analyses from model 3 for remolded DGA specimens	
	of "as received" aggregate	30
Figure 29.	User log-on graphical user interface screen for gaining access to the	
	Kentucky Geotechnical Database and resilient modulus data	34
Figure 30.	Main menu of the Kentucky Geotechnical Database	35
Figure 31.	Gaining access to resilient modulus test results for compacted soils and	
	aggregates in the Kentucky Geotechnical Database	35
Figure 32.	Graphical user interface showing resilient modulus as a function of deviator	
	stress for a selected type of aggregate	36
Figure 33.	Display of resilient modulus summary data in the database	36
Figure 34.	View of resilient modulus test data for a selected aggregate specimen	37
Figure 35.	GUI screen for searching data	38
Figure 36.	Gaining access to resilient modulus test record for a selected specimen in the	
	Kentucky Geotechnical Database	38
Figure 37.	GUI screen for accessing the complete resilient modulus test data	39
Figure 38.	GUI screen for obtaining detailed resilient modulus test data	39
Figure 39.	Complete resilient modulus test record for a selected aggregate specimen	40
Figure 40.	Variation of resilient modulus, M _r , as a function of dry density of Dense Graded	
	Aggregate specimens	41
Figure 41.	Comparison of DGA gradation as received and tested from a producer in	
	Kentucky and the approximate upper and lower gradation limits of crushed	
	limestone reported by Boudali and Robert (1998)	42
Figure 42.	Variation of resilient modulus, Mr, as a function of dry density of No. 57	
	crushed stone specimens	44
Figure 43.	Variation of resilient modulus, Mr, as a function of dry density of crushed	

	river gravel	. 45
Figure 44.	Variation of resilient modulus, M _r , as a function of dry density of recycled	
	concrete aggregate	.45

LIST OF TABLES

Table I.	Summary table of typical values of resilient modulus obtained at three selected testing stress conditions	xvii
Table 1.	Listing of geotechnical test methods	5
Table 2.	Gradations of Dense Graded Aggregate, Crushed Stone Base, and No. 57 Stone	8
Table 3.	Gradations of River Gravel and Recycled Concrete samples	9
Table 4.	Characterizing the density of granular materials on the basis of relative density	12
Table 5.	Dry densities and moisture contents of specimens of Dense Graded Aggregate	
	and Crushed Stone Base	13
Table 6.	Dry densities and moisture contents of specimens of No.57 Stone, River Gravel,	
	and Recycled Concrete	14
Table 7.	Testing stresses	19
Table 8.	Summary of Proposed Resilient Modulus Models	23
Table 9.	Coefficients k_i and R^2 of aggregate samples for four different resilient	
	modulus models	26
Table 10	. Coefficients k_i and R^2 of aggregate samples for four different resilient	
	modulus models (Continued.)	27
Table 11	. Comparison of numerical values of M_r obtained from Models 3, 4, 5, and 6 and calculated at stresses of $\sigma_3 = 3$ and $\sigma_d = 3$	31
Table 12	. Comparison of numerical values of M_r obtained from Models 3, 4, 5, and 6 and calculated at stresses of $\sigma_3 = 10$ and $\sigma_d = 20$	32
Table 13	. Comparison of numerical values of M_r obtained from Models 3, 4, 5, and 6 and calculated at stresses of $\sigma_3 = 20$ and $\sigma_d = 40$	33
Table 14	. Comparison of average values of resilient modulus and percent difference relative to Model 5 for granular materials include in the testing program	34
Table 15	. Minimum and maximum resilient values observed for different specification	
	gradation limits of DGA	42
Table 16	. Minimum and maximum resilient values observed for different specification gradation	on
	limits of Crushed Stone Base	43
Table 17	Ninety-five percent confidence levels of resilient tests repeated on a PVC	
- 4010 17	cylinder and No. 57 stone aggregate	
	- J	
Table A-	1. Original Test Data	57

Table A-2.	Converted Data	. 58
Table B-1.	Dense Graded Aggregate (DGA-4531-1-3-1)	. 62
Table B-2.	Dense Graded Aggregate (DGA-4531-1-4-1)	. 62
Table B-3.	Dense Graded Aggregate (DGA-4531-1-31-1)	. 63
Table B-4.	Dense Graded Aggregate (DGA-4531-1-32-1)	. 63
Table B-5.	Dense Graded Aggregate (DGA-4531-1-33-1)	. 64
Table B-6.	Dense Graded Aggregate (DGA-4531-1-34-1)	. 64
Table C-1.	Dense Graded Aggregate (DGA-4531-1-60-1: Upper Gradation)	. 66
Table C-2.	Dense Graded Aggregate (DGA-4531-1-61-1: Center Gradation)	. 66
Table C-3.	Dense Graded Aggregate (DGA-4531-1-62-1: Lower Gradation)	. 67
Table D-1.	Crushed Stone Base—Upper Gradation Curve	. 70
Table D-2.	Crushed Stone Base—Center Gradation Curve	. 70
Table D-3.	Crushed Stone Base—Lower Gradation Curve	.71
Table E-1.	Number 57s (NoVullex-4531-1-58-1)	. 74
Table E-2.	Number 57s (NoVullex-4531-1-58-2)	. 74
Table E-3.	Number 57s (NoVullex-4531-1-58-3)	. 75
Table E-4.	Number 57s (NoVullex-4531-1-58-4)	.75
Table E-5.	Number 57s (NoVullex-4531-1-58-5)	. 76
Table E-6.	Number 57s (NoVullex-4531-1-58-6)	. 76
Table F-1.	Number 57s (NoVullex-4531-1-57-1)	. 78
Table F-2.	Number 57s (NoVullex-4531-1-57-2)	. 78
Table F-3.	Number 57s (NoVullex-4531-1-57-3)	. 79
Table F-4.	Number 57s (NoVullex-4531-1-57-4)	. 79
Table F-5.	Number 57s (NoVullex-4531-1-57-5)	. 80
Table G-1.	River Gravel, RGRAV-4531-1-21-1	. 82
Table G-2.	River Gravel, RGRAV-4531-1-22-1	. 82
Table G-3.	River Gravel, RGRAV-4531-1-23-1	. 83
Table G-4.	River Gravel, RGRAV-4531-1-24-1	. 83
Table G-5.	River Gravel, RGRAV-4531-1-25-1	. 84
Table G-6.	River Gravel, RGRAV-4531-1-26-1	. 84
Table H-1.	Recycled Concrete, RECON-4531-1-11-1	. 86
Table H-2.	Recycled Concrete, RECON-4531-1-12-1	. 86
Table H-3.	Recycled Concrete, RECON-4531-1-13-1	. 87

Table H-4. Recycled Concrete, REC	CON-4531-1-14-1	
Table H-5. Recycled Concrete, REG	CON-4531-1-15-1	
Table H-6. Recycled Concrete, REG	CON-4531-1-16-1	
Table H-7. Recycled Concrete, REG	CON-4531-1-17-1	

EXECUTIVE SUMMARY

This study developed as a result of a process review conducted in the early nineties by the Federal Highway Administration (FHWA) of the Kentucky Transportation Cabinet's procedure for selecting parameters for pavement design. As a result of this study, FHWA recommended "that an in-depth assessment be made of the most appropriate strength test to accommodate Kentucky's future needs and that resilient modulus testing be given consideration for informational design values, evaluation of other research efforts, and keeping up with state-of-the-art practices." Moreover, mechanistic pavement design models, which are under development by the American Association of Highway Transportation Officials (AASHTO), will rely on the resilient modulus of aggregate bases and soils as important model input parameters (ARA, Inc., 2004).

In the design of pavements, resilient modulus has been used for characterizing the non-linear stress-strain behavior of base aggregates and soil subgrades subjected to traffic loadings. The "AASHTO 1993 Guide for Design of Pavement Structures" recommended that highway agencies use a resilient modulus (M_r), obtained from repeated–load triaxial test, for the design of subgrades and bases. In 2004, the National Cooperative Highway Research Program (NCHRP) released the New Mechanistic–Empirical Design Guide for pavement structures. This final report was entitled, "Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures, NCHRP 1-37A." In the M-E Design Guide, the resilient modulus of unbound materials is required as input to characterize layers for their structural design. As recommended by the guide for design inputs, the resilient modulus of unbound materials may be obtained from a resilient modulus test or available correlations. When the resilient modulus is obtained from a resilient modulus test, the guide designates the input as "Level 1," or the highest input level. If the resilient modulus is obtained from correlations, then the guide designates the input as "Level 2."

This study was sponsored as a means of responding to the factors cited above and to put the Kentucky Transportation Cabinet in a position to take advantage of the latest highway design technology. Numerous resilient modulus tests have been performed previously on compacted soils (Hopkins et al, 2001). Several months were required to purchase, develop compaction and testing protocol, and make operational the necessary equipment for performing resilient modulus tests on Kentucky soils and aggregate bases. This current study focused on performing resilient modulus tests of crushed limestone aggregates commonly used for aggregate base construction in Kentucky. Types of crushed limestone aggregates commonly used in Kentucky include Dense Graded Aggregate (DGA), and Crushed Stone Base (CBS). River gravel is a potential source of aggregate base in the western portion of the state and was included in the study. Other aggregate materials used on occasion include recycled concrete, Number 57 crushed stone, and asphalt drainage blankets, which were also included in the study.

The M-E Design Guide requires the material coefficients k_1 , k_2 , and k_3 . A review was conducted of different mathematical models that have been proposed for relating resilient modulus to principal stresses. Four mathematical models appear to be useful for this purpose, which include those proposed by Seed (1967), Hopkins et al, 2001 and Ni et al, 2002 (UKTC Model), Halin (2001-AASHTO Model), and Uzan (1985). Coefficients, k_1 , k_2 , and k_3 for those models are obtained using multiple regression analysis of all standard testing stresses and corresponding resilient modulus values. The models provide best data "fits" between resilient modulus and testing stresses. Coefficients for each test are listed in the report. In all tests reported herein (except the asphalt drainage blanket) and for the latter three models cited above, values of R^2 were equal to or greater than 0.96.

Resilient modulus equipment previously used to perform tests on compacted soils was used in the series of tests on aggregates. However, an additional triaxial chamber and load actuator that would

accommodate large aggregate specimens had to be purchased. The large triaxial cell obtained accommodates aggregate specimens measuring 6 inches in diameter and 12 inches in height. The design of the triaxial chamber and load actuator permits the placement of the LVDTs (Linear Variable Displacement Transducers) and load cell inside the chamber. This eliminates system strain during the measurement of the resilient modulus testing and load due to piston friction. The equipment is controlled by computer software during all phases of testing. An overhead crane was installed to facilitate the lifting and placement of the heavy testing head that contains the load actuator for loading large specimens.

Particle size analyses were performed on the different types of aggregates. When sufficient fine material was present moisture-density relationships were established. Moisture-density relationships established from test procedure, AASHTO T-99 (2000), were used to remold aggregate specimens for resilient modulus testing. All resilient modulus aggregate specimens measured 6 inches in diameter and 12 inches in height. If sufficient fines were not present in the aggregate to define a moisture-density relationship, then the maximum and minimum values of dry density were determined using a shaker table and large molds. Specimens were molded at different values of relative compactions and tested.

Typical values of resilient modulus obtained from the UKTC resilient modulus model at three, selected stress states of the different aggregates are illustrated and summarized in the table on page xvii.

Based on results reported herein, the following observations, conclusions, and recommendations are made:

- Resilient modulus, by definition, is not a constant value but varies with stress conditions in base aggregates.
- Values of resilient modulus increase as the dry density increases. However, increases of resilient modulus were more noticeable and larger for well-graded aggregates than resilient modulus values of uniformly-graded aggregates. Values of resilient modulus of dense graded aggregate (DGA) generally were larger than values of the resilient modulus of the number 57s, Crushed Stone Base (CSB), river gravel, and recycled concrete
- Resilient modulus tests could not be performed on DGA specimens that represented the upper gradation limit (Kentucky Transportation Cabinet Standard Specifications, 2004) and remolded to about 95 percent of maximum dry density and optimum moisture content (AASHTO T-99). The upper gradation curve allows a maximum of 13 percent particles finer than the U.S. Standard 200 sieve. The combination of a large percentage of fines and a moisture content near optimum created high pore water pressures during cyclic loading, although the test is performed in an undrained state. Consequently, cyclic loading control was a problem. By testing the DGA specimen at moisture contents smaller than optimum moisture content, the test could be performed. The build up of excess pore pressures in the field has been observed indirectly in DGA bases (and subgrade fine-grained soils), as evidenced by the migration of fines to the surfaces of pavements.
- A number of tests were performed to define the resilient modulus of aggregates commonly used in pavement bases in Kentucky. Data that were developed will provide a good means for defining "Level 1," as well as "Level 2," resilient modulus input to the mechanistic model developed by AASHTO (American Association of State Highway and Transportation Officials).

Table II.	Table II. Summary table of typical values of resilient modulus obtained at three selected testing stress conditions.								
			R	esilient Modulus, M _r	(psi)	Dry	Moisture	Percent	Relative
				Selected Stresses			Content	of	Density
Aggregate	Base Type	Specimen Number	σ ₃ =3	σ ₃ =10	σ ₃ = 20			Dry	
			σ_d = 3	σ_d = 20	$\sigma_{\rm d}$ = 40			Density	
			(psi)	(psi)	(psi)	(lbs/ft ³)			(%)
	As received	DGA-4531-1-3-1	14,657	37,014	65,554	132.7	5.5	93.0	-
		DGA-4531-1-4-1	15,179	36,167	61,089	136.3	5.7	95.6	-
Danca		DGAVULLEX-4531-1-31-1	14,293	40,022	73,704	136.6	5.7	95.8	-
Graded		DGAVULLEX-4531-1-32-1	14,193	34,342	58,239	103.9	6.3	72.1	-
Aggragata		DGAVULLEX-4531-1-33-1	23,506	53,434	86,299	144.2	5.5	99.9	-
Aggregate		DGAVULLEX-4531-1-34-1	21,388	41,031	62,434	130.7	5.2	91.7	-
(DGA)	Blended to Ky Specifications	DGAUPPER-4531-1-60-1	24,271	48,125	73,817	118.9	2.3	83.6	-
	2 1	DGACENTER-4531-1-61-1	10,893	35,139	68,128	128.5	4.8	89.2	-
		DGALOWER-4531-1-62-1	13,601	39,502	74,769	117.4	1.9	-	>100
Crushed St	one Base (CSB)	CSBUPPER-4531-1-63-1	19,621	46,892	77,313	139.5	4.8	-	-
(As Receiv	red)	CSBCENTER-4531-1-64-1	16,823	42,635	73,319	140.9	3.5	-	-
	,	CSBLOWER-4531-1-65-1	14,043	34,732	58,817	113.7	2.6	-	\approx 100
		No57VULLEX-4531-1-58-1	23,575	43,738	64,408	90.0	0.9	-	0.1
		No57VULLEX-4531-1-58-2	38,281	47,307	59,887	97.8	0.9	-	100.0
	As received	No57VULLEX-4531-1-58-3	21,749	39,274	58,544	90.8	0.8	-	0.8
	Asteceived	No57VULLEX-4531-1-58-4	24,577	43,882	64,121	97.8	1.0	-	100.0
No. 57		No57VULLEX-4531-1-58-5	25,963	42,747	60,707	90.8	0.9	-	1.5
INO. 37		No57VULLEX-4531-1-58-6	24,041	44,620	65,736	97.9	0.9	-	100.0
Stone		No57VULLEX-4531-1-57-1	26,784	49,689	73,255	92.7	0.0	-	36.9
		No57VULLEX-4531-1-57-2	28,189	47,889	69,328	92.7	0.0	-	36.9
	Repeat Tests	No57VULLEX-4531-1-57-3	30,094	53,889	78,742	92.7	0.0	-	36.9
		No57VULLEX-4531-1-57-4	27,196	47,070	68,428	92.7	0.0	-	36.9
		No57VULLEX-4531-1-57-5	32,714	52,726	74,295	92.7	0.0	-	36.9
	÷	RGRAV-4531-1-21-1	14,790	36,839	63,067	126.3	4.9	-	104.3
		RGRAV-4531-1-22-1	12,740	35,663	63,896	103.9	5.3	-	7.0
Crushed Ri	iver Gravel	RGRAV-4531-1-23-1	14,351	38,163	68,305	126.3	5.6	-	104.3
(As Receiv	red)	RGRAV-4531-1-24-1	13,524	33,826	59,468	103.3	5.8	-	3.8
		RGRAV-4531-1-25-1	12,546	32,353	56,546	103.7	5.5	-	5.9
		RGRAV-4531-1-26-1	16,071	39,046	65,401	121.0	6.0	-	84.5
		RECON-4531-1-11-1	19,584	43,388	73,043	118.2	11.1	-	164.0
		RECON-4531-1-12-1	17.421	36.892	58,764	109.7	8.5	-	116.0
Degralad C	l'amorata	RECON-4531-1-13-1	14,372	34.982	60,454	107.2	9.1	-	98.6
Kecyclea C		RECON-4531-1-14-1	14,412	33,845	57,051	94.4	8.9	-	-2.7
(As Receiv	ea)	RECON-4531-1-15-1	16.306	36.969	61.057	94.7	8.6	-	2.6
		RECON-4531-1-16-1	18,044	40,557	66,453	105.7	10.6	-	88.9
RECON-4531-1-17-		RECON-4531-1-17-1	16,950	37,380	60,511	120.3	12.2		91.7

- Studies are needed to examine the following areas of research, which may affect the value of resilient modulus of aggregate bases:
 - The effect of different gradations (or particle sizes) of the base materials on the value of resilient modulus needs to be examined. The maximum, or the permissible, percentage of fines (the amount finer than the U. S. Standard No. 200 sieve) for DGA and Crushed Stone Bases should be determined which would not allow excess pore water pressures to build up under cyclic loading of the resilient modulus test. Limited magnitudes of fines and moisture contents could be determined by performing resilient modulus on specimens compacted to different moisture contents and percentages of fines.
 - □ The effect of migratory subgrade fines (clay-size particles) on the resilient modulus of base materials needs to be examined. During dissipation of excess pore pressures, fine clay-size particles from the subgrade are pushed into the lower portion of the base aggregate. Strengths (and resilient modulus) of the base materials decrease when excess pore pressures occur in the soil subgrade. Secondly, as fines (uncontrolled) enter the bottom of base aggregates from an untreated, fine-grained subgrade, excess pore pressures may build up in the base aggregates due to the increase of fines.
 - The effectiveness of geofabrics (used as grade separators) to prevent migration of fines into the bottom of the aggregate base needs to be studied. Although the migration of fines may be prevented, the geofabric may clog and cease functioning with increasing time. If the material allows fine particles to pass into the base, then the resilient modulus of the base is altered. In either case, the resilient modulus of the base or/and subgrade will be altered.
 - □ Extensive geotechnical research needs to be performed to examine "filter requirements" between base aggregates and clayey subgrades and how this relationship affects resilient modulus of bases. Findings of this type of research could help redefine and improve the engineering functions of gradations of typical base aggregates commonly used in Kentucky. To prevent migration of subgrade fines into base aggregates, filter criteria must be met between a given type of soil subgrade and a selected type of base aggregate. Moreover, when filter fabric is used as a grade separator to prevent the migration of subgrade fines into the base aggregates, filter criteria for improving the function and performance of base aggregates.
 - □ Tests need to be performed to adequately define the resilient modulus of chemically stabilized subgrades. This study did not address this important determination. In the pavement system, a chemically treated subgrade may function as a base in some cases or as a subbase in others. Chemical stabilization of subgrades in Kentucky is increasingly being used to improve the poor engineering properties of soils. Sufficient testing should be performed to provide "Level 1," as well as "Level 2," resilient modulus data input to the mechanistic model developed by AASHTO. Chemical admixtures to be examined should include hydrated lime, Portland cement, and lime kiln dust. Typical soils found in Kentucky should be included in the study.

With completion of this study on the resilient modulus of aggregates, the Kentucky Transportation Cabinet is in a good position to implement the use of mechanistic pavement design models. A second study, sponsored by the Kentucky Transportation Cabinet, focused on defining the resilient modulus of compacted soils commonly located in Kentucky. Both soaked and unsoaked specimens were tested. Consequently, data for defining the resilient modulus of aggregates and soils are available for use in the mechanistic pavement design model developed for AASHTO. However, a third study is needed to define the resilient modulus of chemically treated subgrades.

INTRODUCTION

Resilient modulus has been proposed as a means of characterizing the elastic properties of pavement materials. It is expressed as the ratio of deviator stress applied to the pavement layers (and the aggregate base layer) and the resilient axial deformation recovered after release of the deviator stress. Assumptions are made tacitly that pavement materials are designed for loading in the elastic range and that the resilient modulus is the only parameter needed to design the thickness of a pavement. Several types of aggregate bases are used in designing and constructing flexible pavements in Kentucky. A structural layer coefficient of 0.14, or a California Bearing Ratio (CBR) of 100 percent, is usually assigned to the aggregate base for design purposes (AASHTO, 1993).

Although empirical relations have been used in the past to estimate the resilient modulus of aggregates and soils using laboratory tests. The value of resilient modulus is stress-strain dependent. That is, the value changes as stress and strain conditions change. AASHTO (American Association of State Highway and Transportation Officials, 1993, 2000) and SHRP (Strategic Highway Research Program, 1989) published a testing standard and protocol, T-294, for performing resilient modulus of aggregates. Equipment for performing resilient modulus tests of aggregates and soils aggregates has steadily evolved and improved over the past few years.

Several mathematical expressions are available for modeling the resilient modulus of aggregates and soils. These include such models as proposed by Moossazadeh and Witczak (1981), Dunlap (1963), Seed et al. (1967), May and Witczak (1981) and Uzan (1985), Hopkins et al (2001) and Ni et al, 2001. Effectiveness of those models to predict resilient modulus is discussed in this report. Comparisons are made among the various models.

The trend in the design of highway pavements consists of using mechanistic models (ARA, Inc. 2004). Although much progress has been made in recent years in developing mathematical, mechanistic pavement design models, results obtained from those models are only as good as the material parameters entered into the models. In 1986 and 1993, the American Association of State Highway Transportation Officials (AASHTO Guides) recommended the use of resilient modulus for characterizing highway materials for pavement design (Mohammad et al., 1995). To promote this concept, the 1962 flexible pavement design equation originally published by the Highway Research Board (1962) was modified in the 1993 AASHTO Guide to include the resilient modulus of soils. This approach attempts to make use of the mechanical properties of the asphalt, or concrete, base courses, and soil subgrades.

Many state transportation agencies have used, or continue to use, empirical pavement design methods involving soil support values, California Bearing Ratio (CBR), or R-values. According to Mohammad et al., (1995), empirical values and design approaches do not adequately represent the response of pavement to the dynamic loading caused by moving vehicles. The resilient modulus concept arose as a result of efforts to better simulate the loading of pavements by moving vehicles. The resilient modulus test for soils was originally developed by Seed et al. (1967) and was later formulated for highway applications (Claros et al., 1990).

The resilient modulus test provides a relationship between deformation (or strain) and stresses in pavement materials, including aggregate bases and subgrade soils, subjected to moving vehicular wheels. Hence, it is not necessarily a fixed value but varies according to the applied stresses of moving vehicles and the resulting stress level in the pavement layers. The test measures the stiffness of a cylindrical specimen of aggregate or soil that is subjected to a cyclic or repeated axial load. It provides a means of analyzing different materials and soil conditions, such as moisture and density,

and stress states that simulate the loading of actual wheels. For a given deviator stress, the resilient modulus, M_r , is defined as the slope of the deviator-axial strain curve, or simply the ratio of the amplitude of the repeated axial stress to the amplitude of the resultant recoverable axial strain, or (Figure 1):

$$M_r = \frac{\Delta \sigma_d}{\Delta \varepsilon_{axial}} \tag{1}$$

where

 $\Delta \sigma_d = \sigma_1 - \sigma_3 = \text{deviator stress},$ $\sigma_1 \text{ and } \sigma_3 = \text{major and minor principal stresses, and}$ $\Delta \varepsilon_{axial} = \text{recoverable axial strain.}$

The specimen is subjected to repeated loading at a particular stress level and the recoverable strain is measured. Ideally, the specimen exhibits only elastic strains at the time the resilient modulus is measured. The resilient modulus can, therefore, be thought of as the secant Young's Modulus of a certain material typically different than the initial tangent value (Houston et al., 1993). Resilient modulus is used in many pavement and railroad track designs. This modulus can be used for either the asphalt or subgrade level when the materials are subjected to moving dynamic loads. As shown in Figure 2, the stress level in a subgrade varies with the thickness of the pavement. If the pavement is thin, then the cyclic deviator stresses are large. When the pavement is thick, the cyclic deviator stresses in the subgrade are small. Consequently, the magnitude of the applied cyclic load is varied over a range of anticipated subgrade stress values, as shown in Figure 3, in resilient modulus testing to measure the variation of the resilient modulus, or stiffness.

Values of resilient modulus of aggregate bases are needed to use in mechanistic pavement design models developed by the American Association of State Highway Transportation Officials (AASHTO, Halin, 2001).

OBJECTIVES

Highways in Kentucky are constructed with various types of aggregate bases. Furthermore the gradation can vary greatly. The objective of this study was to determine values of resilient modulus of different aggregate bases commonly used in pavements in Kentucky.

A major intent of this study was to follow through on a suggestion made by FHWA in 1993 "that an in-depth assessment be made of the most appropriate strength test to accommodate Kentucky's future needs and that resilient modulus testing be given consideration for informational design values, evaluation of other research efforts, and keeping up with state-of-the-art practices." Another major intent of this study was to put the Kentucky Transportation Cabinet in a position (from a design point of view) to use the new mechanistic models developed by AASHTO. Initially, considerable study time was required for purchasing the resilient modulus testing equipment, evaluating the equipment, and making the equipment operational.

SCOPE OF STUDY

Few states or agencies have performed a large number of resilient modulus tests mainly because the test requires expensive, specialized testing equipment and software, the testing procedure is complex, and it is time consuming. The scope of this study mainly included defining values of the resilient modulus of different types of aggregates commonly used in highway pavement bases in Kentucky, examining mathematical expressions, or models, for relating resilient modulus and stresses, and

4

devising an easy means for Cabinet engineers to access the resilient modulus data and mathematical models. Considerable efforts were devoted to devising a compaction protocol for large specimens. This procedure required attention to many details. A summary of the resilient modulus data generated in this study is contained in this report and detailed information for each test appears in the Kentucky Geotechnical Database, which is housed on a server of the Kentucky Transportation Cabinet. Resilient modulus equipment used to perform the tests is fully described. A limited number of tests were performed on aggregate specimens and a synthetic specimen to evaluate the reliability and repeatability of the testing equipment.

BACKGROUND

Values of resilient modulus, M_r, of unbound aggregate, subbase and subgrade are main input parameters in the mechanistic-empirical pavement design procedures developed in the NCHRP (National Cooperative Highway Research Program) Project 1-37A (Halin, 2001). To develop the necessary input data, the Kentucky Transportation Cabinet has sponsored two research studies to generate resilient modulus values. This study represents the second research study sponsored by the Kentucky Transportation Cabinet and it focuses on defining the resilient modulus of aggregates commonly used in Kentucky to construct pavement bases.

In the first study (Hopkins et al, 2001), sponsored by the Kentucky Transportation Cabinet, resilient modulus tests were performed on several different types of typical soils used in Kentucky to construct subgrades. The tests were performed on specimens compacted to 95 percent of maximum dry density and optimum moisture (AASHTO T-99). Both unsoaked and soaked specimens were tested. Each soil sample was classified according to the AASHTO and Unified Classification Systems. Data are available for determining the resilient modulus of a given soil type when the soil classification is known. Interpretation can be made using the group index of the soil type. In the first study, a new relationship, or mathematical model, was developed that relates the resilient modulus to testing stresses. Multiple regression analysis was used to determine the k-coefficients (so called " k_1 , k_2 , and k_3 ") of the new model. All testing stresses are used in the analysis to define the coefficients. Resilient modulus data of numerous soil types are stored in the Kentucky Geotechnical Database (Hopkins, et al 2005). The database is located on a server of the Kentucky Transportation Cabinet.

SAMPLING AND GEOTECHNICAL PROPERTIES

Bulk Samples

Bulk samples of crushed limestone bases most commonly used in Kentucky were collected from actual production runs at selected quarries. These included:

- Dense Graded Aggregate (DGA)
- Crushed Stone Base (CSB).

Other sample types submitted by engineers of the Kentucky Transportation Center for resilient modulus testing included:

- Number 57 crushed limestone
- Crushed river gravel (quartz)

- Recycled crushed concrete
- Asphalt drainage blanket.

Table 1. Listing of geotechnical test methods.

Type of Test	Test Method	
Moisture Content	AASHTO T 265-93 (1996)	
Maximum Dry Density ¹ (Shaker Table)	Relative DensityMethod Devised	
Minimum Dry Density ¹	Relative DensityMethod Devised	
Particle Size Analysis	AASHTO T 27-99	
	AASHTO T –11-91	
Moisture-Density Relations	AASHTO T 99 Method D	
Resilient Modulus of Aggregates	AASHTO T 292-91 (1996) ²	
	AASHTO T 307-99 $(2003)^3$	

1. A way of characterizing the in-place density of a granular material.

2. This standard method permitted internal or external placement of the LVDTs and load cell. The LVDT sensors and load cell were placed internally in the chamber for all tests reported herein. The number of conditioning cycles—repeated load applications-- used in the tests were 200 and not 1000, as specified by AASHTO T 292-91, or 500-1000, as specified by AASHTO 307-99. Load applications used in the tests were 100 for following sequence numbers, as specified by AASHTO 307-99. 307-99.

3. AASHTO T 307–99 specifies mounting, externally, the LVDT sensors and load cell.

Geotechnical Test Methods and Physical Properties

Test methods used to determine classifications and engineering properties of the bulk samples are tabulated in Table 1. Standard test methods of AASHTO were generally followed.

Gradation and Dry Unit Weights

Two series of resilient modulus tests were performed on specimens of Dense Graded Aggregate (crushed limestone).

In the first series, six resilient modulus tests were performed on the DGA sample "as received." Gradation of the DGA sample as it was received from the producer is shown in Figure 4 and compared to the upper, center, and lower gradation specification limits (as specified by the Kentucky Specifications for Road and Bridge Construction (2004)). The Kentucky specifications allow the percentage finer than the U. S. Standard No. 200 sieve to range from 4 to

13. The percent finer than the No. 200 sieve for the "as received" sample was about 8. As shown in Figure 4, and at a particle size below 3 mm, the gradation representing the center of the upper and lower specification contained gradations slightly larger particle sizes than the particle sizes of the "as received" sample. The second series of resilient modulus tests were performed on blended DGA materials representing the upper and lower gradation specifications limits, as well as a gradation curve representing the center of the upper and lower curves (Figure 4).

Three resilient modulus tests were performed on Crushed Stone Base (CSB). Different particle sizes of the crushed stone aggregate were blended to duplicate the upper and lower specification gradation limits, as shown in Figure 5, and form two specimens for The third blended testing. specimen represented the center gradation curve. The Kentuckv specifications

Stone Base (CSB) specimens blended according to specifications.

Figure 6. Upper and lower specification gradation curves compared to the gradation curve of No. 57 crushed limestone sample "as received."

allow the percentage finer than the U. S. Standard No. 200 sieve to range from 0 to 8 for CSB material.

Gradation of the Number 57 crushed limestone as received is shown in Figure 6 and compared to the upper and lower gradation limits of the Kentucky specifications. Six resilient modulus tests were performed on this material. Also, resilient modulus tests were performed on the same specimen of the No. 57 stone five times to examine repeatability of the testing equipment and operator. The Kentucky specifications allow the percentage finer than the U. S. Standard No. 8 sieve to range from zero to 5 for this material.

The gradation of the Crushed River Gravel as received is shown in Figure 7. Percentage finer than the U. S. Standard No. 200 sieve of this material was 4. Six resilient modulus tests were performed on this material.

Since recycled concrete is occasion used on as base material. eight tests were performed to characterize the resilient modulus of this material. Gradation of the sample as received is shown in Figure 8. Only 1.7 percent of the particle sizes were finer than the U.S. Standard No. 200.

Values of gradations for the aggregates included in the testing program for resilient modulus are listed in Tables 2 and 3.

The approach used to form specimens for resilient modulus testing was dependent on whether a moisture-density relationship, as obtained from AASHTO T-99, could be established. When a relationship could be established specimens were remolded to a certain percentage of the maximum dry density and optimum moisture content, or selected "target values."

A moisture-density relationship, as shown in Figure 9, was established for the DGA sample

(Figure 4) as received from the quarry. Relationships were also established for the upper and center DGA gradation specification samples (see Figure 4). Those relationships are shown Figures in 10 and 11. respectively. Values of maximum dry density of the three different DGA samples only ranged from 142.2 to 144.1 lbs/ft^3 . Optimum moisture contents of the three samples were essentially the same and ranged from 6.7 to 6.9 percent.

Moisture-density relationships for the Crushed Stone Base were established for the upper and center gradation specifications limits. Moisture-density relationships for those samples

			Sizes of Coarse aggregates Amounts Finer than Each Laboratory Sieve (Square Openings) Percentage by Weight										eight	
	Viza		2.1/2	1 1/2	1	2/4	1/2	2/0	No.4	No. 10	No. 20	No. 40	No. 60	No. 200
Sieve Opening (mm)			$\frac{21/2}{2}$	1 1/2	1	3/4	1/2	3/8	1NO. 4	NO. 10	NO. 50	INO. 40	NO. 00	NO. 200
Sieve Opening (mm)			03	37.5	25	19	12.5	9.5	4.75	2.00	0.60	0.425	0.25	0.075
Base	Base Type Specimen Number				100	01	77	(0	51	22		1.4	11	0
		DGA-4531-1-5-1			100	91	77	69	54	33		14	11	8
D		DGAVIII LEX 4521 1 21 1			100	91	77	69	54	33		14	11	8
Grade Aggregate (DGA)	" A a	DGAVIII LEX 4531-1-51-1			100	91	77	69	54	33		14	11	8
	As Deceived"	DGAVULLEX-4531-1-32-1			100	91	77	69	54	33		14	11	8
	Received	DGAVULLEX-4531-1-35-1			100	91	77	69	54	33		14	11	8
		DORVOLLER-4351-1-54-1	1		100	71	,,	07	54	55		17	11	0
-														
	Specification	DGAUPPER-4531-1-60-1			100	100		80	65		40			13
	Limite	DGACENTER-4531-1-61-1			100	85		65	48		25			9
	Linits	DGALOWER-4531-1-62-1	-1 100 70 50	30		10			4					
						, ,								
			100	100		95		70	55		20			8
Crushed	Stone Base	CSBUPPER-4531-1-03-1	100	100		75		50	25		10			8
Specifica	tion Limits	CSBCENTER-4531-1-64-1		95		//.5		50	35		12			4
_		CSBLOWER-4531-1-65-1	100	90		60		30	15		5			0
		No57VULLEX-4531-1-58-1			100	85	29	10	3					
	"As Received"	No57VULLEX-4531-1-58-2			100	85	29	10	3					
		No57VULLEX-4531-1-58-3			100	85	29	10	3					
		No57VULLEX-4531-1-58-4			100	85	29	10	3					
Size No. 57		No57VULLEX-4531-1-58-5			100	85	29	10	3					
Size No. 57		No57VULLEX-4531-1-58-6			100	85	29	10	3					
Stone														
	"As	No57VULLEX-4531-1-57-1			100	85	29	10	3					
	Received"	No57VULLEX-4531-1-57-2			100	85	29	10	3					
	(Repeat	No57VULLEX-4531-1-57-3			100	85	29	10	3					
	Tests)	No57VULLEX-4531-1-57-4			100	85	29	10	3					
	,	No57VULLEX-4531-1-57-5			100	85	29	10	3					

Table 2. Gradations of Dense Graded Aggregate, Crushed Stone Base, and No. 57 Stone.

		Sizes of Coarse aggregates Amounts Finer than Each Laboratory Sieve (Square Openings) Percentage by Weight											
U. S. Sieve Size		1 1/2	1	3/4	1/2	3/8	No. 4	No. 8	No. 16	No. 30	No. 50	No. 100	No. 200
Sieve Opening (mm)		37.5	25	19.0	12.5	9.5	4.75	2.36	1.18	0.6	0.30	0.15	0.075
Base Type	Specimen Number												
	RGRAV-4531-1-21-1	100	92	74	50	45	38	26	17	13	10	7	4
	RGRAV-4531-1-22-1	100	92	74	50	45	38	26	17	13	10	7	4
River	RGRAV-4531-1-23-1	100	92	74	50	45	38	26	17	13	10	7	4
Gravel	RGRAV-4531-1-24-1	100	92	74	50	45	38	26	17	13	10	7	4
"As	RGRAV-4531-1-25-1	100	92	74	50	45	38	26	17	13	10	7	4
Received"	RGRAV-4531-1-26-1	100	92	74	50	45	38	26	17	13	10	7	4
	RECON-4531-1-11-1	100	96	88	72	61	41	30	22	16	8	5	2
	RECON-4531-1-12-1	100	96	88	72	61	41	30	22	16	8	5	2
Recycled	RECON-4531-1-12-2	100	96	88	72	61	41	30	22	16	8	5	2
Concrete	RECON-4531-1-13-1	100	96	88	72	61	41	30	22	16	8	5	2
"As	RECON-4531-1-14-1	100	96	88	72	61	41	30	22	16	8	5	2
Received"	RECON-4531-1-15-1	100	96	88	72	61	41	30	22	16	8	5	2
Received	RECON-4531-1-16-1	100	96	88	72	61	41	30	22	16	8	5	2
	RECON-4531-1-17-1	100	96	88	72	61	41	30	22	16	8	5	2

Table 3. Gradations of River Gravel and Recycled Concrete samples.

If moisture-density relationships could not be established from AASHTO T-99, then another approach was adopted to remold resilient modulus specimens. This condition usually occurs when there are insufficient fines (percent finer than the US Standard sieve No. 200) in the aggregate. In those cases, the relative density concept was used.

Relative density is used to characterize the density of granular materials (Lambe, 1969) and it is defined as follows:

$$D_{r} = \left[\frac{\gamma_{d_{max}}}{\gamma_{d}} \times \frac{\gamma_{d} - \gamma_{d_{min}}}{\gamma_{d_{max}} - \gamma_{d_{min}}} \times 100\%\right]$$
(4)

where

 $\gamma_{d_{max}}$ = dry unit weight of aggregate in densest condition,

 $\gamma_{d_{\text{min}}} = dry$ unit weight of aggregate in loosest conditon, and

 γ_d = in-place dry unit weight of aggregate specimen .

When the maximum dry density could not be determined from AASHTO T-99, dry density of the aggregate in the densest state was determined using a shaker table and equipment shown in Figure 14. By weighing the material after shaking and noting the volume of container, the dry density of the aggregate in the densest condition was determined. The dry density of the

aggregate in the loosest condition was determined by loosely placing the aggregate by hand in one of the containers shown in Figure 14. By weighing the material and noting the volume of container, the dry density of the aggregate in the loosest condition was determined.

Descriptive terms that may characterize be used to conveniently the density of granular materials on the basis relative density of are presented in Table 4. For example, when the relative density is some value between zero and 15 percent, the density state is described as "Very

Loose." If the relative density ranges from 85 to 100, then the density state may be described as "Very Dense."

Resilient modulus specimens of the following aggregate samples were remolded at selected relative densities:

- Blended DGA material representing the lower specification gradation curve
- Blended Crushed Stone aggregate representing the lower specification gradation curve
- Number 57 aggregate
- River Gravel
- Recycled Concrete.

Values of maximum dry densities and optimum moisture content from AASHTO T-99 for aggregates that contained sufficient fines, maximum and minimum values of dry densities of aggregates that did not contain sufficient fines to perform AASHTO T-99, and target and actual remolding dry densities and moisture contents are given in Tables 5 and 6.

Resilient modulus specimens of DGA as received from the producer were compacted to percents of maximum dry density ranging from 72 to 100. Moisture contents of the specimens ranged from 5.2 to 6.3, which were slightly Table 4. Characterizing the density ofgranular materials on the basis of relativedensity.

Very loose
Loose
Medium
Dense
Very Dense
-

			Moisture	-Density	Maxim Mini	um and mum						
	Specimen Description and Type			Relationships ¹		Dry Density		Values		Actual	Values	_
		Specimen Number	Maximum Dry Density ¹	Optimum Moisture Content	Max.	Min.	Dry Density ²	Optimum Moisture Content	Dry Density	Moisture Content	Relative. Density, Dr	Percent Max. Dry Density
Aggres	ate Base Type		(lbs/ft ³)	(%)	(lbs/ft^3)	(lbs/ft^3)	(lbs/ft ³)	(%)	(lbs/ft ³)	(%)	(%)	(%)
		DGA-4531-1-3-1	142.5	6.8			135.4	6.6	132.7	5.5		93.0
		DGA-4531-1-4-1	142.5	6.8			135.4	6.6	136.3	5.7		95.6
	"As Received"	DGAVULLEX-4531-1-31-1	142.5	6.8			135.4	6.6	136.6	5.7		95.8
		DGAVULLEX-4531-1-32-1	142.5	6.8			loose	6.6	103.9	6.3		72.1
		DGAVULLEX-4531-1-33-1	142.5	6.8			142.5	6.6	144.2	5.5		≈100
DGA		DGAVULLEX-4531-1-34-1	142.5	6.8			142.5	6.6	130.7	5.2		91.7
	Specification Limits	DGAUPPER-4531-1-60-1	142.3	69				-	118.9	2.3		83.6
		DGACENTER-4531-1-61-1	144.1	6.9			-	-	128.5	4.8		89.2
		DGALOWER-4531-1-62-1			113.6	107.3	-	-	117.4	1.9	≈100	
a 1	10. 5	CSBUPPER-4531-1-63-1	144.8	6.2			137.6	6.2	139.5	4.8		96.3
Crushe	ed Stone Base	CSBCENTER-4531-1-64-1	144.1	5.5			136.9	5.5	140.9	3.5		97.8
speem		CSBLOWER-4531-1-65-1			114.2	102.2	114.2	2.6	113.7	2.6	≈100	

Table 5. Dry densities and moisture contents of specimens of Dense Graded Aggregate and Crushed Stone Base.

	Specimen	Description and Type	Maxim Minimur	um and n Density		Target Val	ues	Actual Va	lues	
Aggregate Base Specimen Nu Type		Specimen Number	Max.	Min.	Dry D	Density	Moisture Content	Dry Density	Moisture Content	Relative. Density, Dr
			(lbs/ft^3)	(lbs/ft^3)	(lbs/ft ³)		(%)	(lbs/ft^3)	(%)	(%)
		No57VULLEX-4531-1-58-1	97.8	90.0		90.0	0	90.1	0.9	0.
		No57VULLEX-4531-1-58-2	97.8	90.0	97.8		0	97.8	0.9	100.0
	"As	No57VULLEX-4531-1-58-3	97.8	90.0		90.0	0	90.8	0.8	0.
	Received	No57VULLEX-4531-1-58-4	97.8	90.0	97.8		0	97.8	1.0	100.
No. 57		No57VULLEX-4531-1-58-5	97.8	90.0		90.0	0	90.8	0.9	1.:
Stone		No57VULLEX-4531-1-58-6	97.8	90.0	97.8		0	97.9	0.9	100.
Stone		CS1-57s	97.8	90.0	-		0	94.9	0.0	64.
		(VULLEX-4531-1-57-1)	97.8	90.0		92.9	0	92.7	0	36.
		(VULLEX-4531-1-57-2)	97.8	90.0		92.9	0	92.7	0	36.
	Repeats	(VULLEX-4531-1-57-3)	97.8	90.0		92.9	0	92.7	0	36.
		(VULLEX-4531-1-57-4)	97.8	90.0		92.9	0	92.7	0	36.
		(VULLEX-4531-1-57-5)	97.8	90.0		92.9	0	92.7	0	36.
I		RGRAV-4531-1-22-1	128.2	105.2		102.6	6.6	103.9	5.3	7.
River	Gravel ¹	RGRAV-4531-1-24-1	128.2	105.2		102.6	6.6	103.3	5.8	3.
(Qı	uartz)	RGRAV-4531-1-25-1	128.2	105.2		102.6	6.6	103.7	5.5	6.
"A ~ D		RGRAV-4531-1-26-1	128.2	105.2	125.1		6.6	121.0	6.0	84.
AS K	leceived	RGRAV-4531-1-21-1	128.2	105.2	125.1		6.6	126.3	4.9	100.
		RGRAV-4531-1-23-1	128.2	105.2	125.1		6.6	126.3	5.6	100.
		RECON-4531-11-1	107.3	94.4	107.3		8.9	117.7	11.1	164.
		RECON-4531-12-1	107.3	94.4	107.3		8.9	109.7	8.5	116.
Recycled	l Concrete ²	RECON-4531-13-1	107.3	94.4	107.3		8.9	107.1	9.1	98.
"As Re	eceived"	RECON-4531-14-1	107.3	94.4		94.4	8.9	94.1	8.9	0.
		RECON-4531-15-1	107.3	94.4		94.4	8.9	94.7	8.6	2.
		RECON-4531-16-1	107.3	94.4	107.3		8.9	105.7	10.6	88.
		RECON-4531-17-1	107.3	94.4	107.3		8.9	106.1	12.2	91.
Asphalt Drainage Blanket "As		ADB-4531-1-66-1 (tested at Room Temperature $\approx 70^{0}$ F)						108.8		

110 ____ -_ . . • . . . ___ -1.5 --. ~ -

2. Moisture content of specimen as received =8.9 percent.
smaller in value than the optimum moisture content of 6.8 percent. Blended DGA specimens representing the upper and center specification gradation curves were compacted to 84 and 89 percent of maximum dry density, respectively. Blended Crushed Stone specimens representing the upper and center specification gradation curves were compacted to 96 and 98 percent of maximum dry density, respectively.

Blended resilient modulus specimens representing the lower specification curves of DGA and Crushed Stone Base were compacted to relative densities of about 100 percent, or to a "very dense" state. Relative densities of specimens of No. 57 aggregate ranged from about zero to 100 percent. Relative densities of River Gravel specimens ranged from about 4 to 100 percent. The recycled concrete specimens were compacted to relative densities ranging from zero to a value greater than 100 percent. That is, the dry density of one specimen (RECON-4531-12-1) exceeded by about 10.4 lbs/ft³ the maximum dry density obtained from the shaker table test. For the other specimens of this material, the relative densities ranged from zero to about 100 percent.

RESILIENT MODULUS TESTING

Testing Equipment

The resilient modulus testing equipment, Figure 15, located at the University of Kentucky Transportation Center, is a model RMT-1000, obtained from the Structural Behavior Engineering Laboratories, of Phoenix, Arizona. The system consists of a pressure control panel, plexiglass triaxial cell, a hydraulic power supply, and a computer and software for controlling the testing of a resilient modulus specimen. The system is a complete, closed-loop, servo hydraulic triaxial testing system. The equipment design shown in Figure 16 eliminates the need for a large loading (reaction) frame.

The base and top of the triaxial cell is constructed of stainless steel. The chamber is plexiglass, or acrylic plastic, as shown in Figure 16. The cell is rated to withstand a confinement stress of 150 psi. The triaxial chamber accommodates aggregate specimens measuring 6 inches in diameter and 12 inches in height. A load actuator, as shown in Figures 16 and 17, applies repeated loads. A close-up view of the load actuator is shown in Figure 17. Various load forms of different shapes are available for applying loading sequences. An overhead crane was installed to lift and place the load actuator on the large, specially designed, triaxial cell. The triaxial system has self-contained internal transducers. The triaxial testing cell rests on a massive concrete block.

System Components

The servo controller is a Model 547-1 with dual AC/DC feedback signal conditioning for load and deformation transfer. The signal conditioning system is a series 5 model 300, 4- channel for 2 internal LVDT's and 2 pressure transducers. A view of the LVDTs mounted internally, on the sides of a specimen, is illustrated in Figure 18. A load cell is mounted at the base of the specimen in the triaxial chamber. The porous stone is mounted flush in the base, as shown in Figure 18. The LVDT Transducer calibrator is a Model 139. It has a 1-inch travel range and a resolution of 0.00005 inches. The load cell, pressure transducer, and pore pressure transducer are calibrated using shunt calibration with preset resistance.

Figure 16. View of aggregate specimen in the triaxial chamber.

Compaction of Aggregate Specimens

After measuring the exact amounts of aggregate and water to form an aggregate specimen of a pre-selected dry density and moisture content (Hopkins Beckham, and 1993: Hopkins et al., 1995; Hopkins et al., 2002), the material was compacted in increments of about 2 to 3 inches in a split mold, as shown in Figure 19. A proctor hammer was used to compact the specimen in small increments. Material that sometimes remained after the specimen mold had been compacted was weighed. On some occasions, a small amount of material remained in the pan. That is, not all of the material could be placed in the

mold. However, this did not occur too frequently. The actual dry density and moisture content was based on measuring the weight and moisture content of the material after the test.

Resilient Modulus Testing Protocol

In the resilient modulus testing reported herein, essential elements of AASHTO T292-91 (1996)-20th edition- and T 307-99 (2003)-24th Edition- were followed. However, there were two major exceptions. The load cell and LVDTs were not located *externally*, as shown by the latter standard. Rather the load cell and LVDTs were located *internally*, as shown in Figure 18 and in

the former standard above. Considering that extremely small strains are involved in testing aggregate specimens, internal location of the LVDTs aids in eliminating system strains. By locating the load cell internally, errors due to friction of the piston are eliminated.

Both AASHTO T 292-91 and T 307-99 specify a conditioning cycle to be applied to the aggregate specimen. In the former standard, the conditioning sequence consisted of 1000 load applications. The deviator stress and the confining stress are held at 15 psi and 20 psi, respectively, during conditioning. In AASHTO T 307-99, 500-1000 load

Figure 19. Placing aggregate and compaction of a specimen in a split mold.

applications are specified and the deviator and confining stress are held at 15 psi. Specimen conditioning is intended to eliminate the effects of initial permanent deformation and specimen loading imperfections and not cause permanent plastic deformation.

The other exception in this study consisted of applying only 200 load applications in the conditioning sequence instead of the 500 to 1000 load applications specified by AASHTO T 307-99. The loading sequence is illustrated in Table 7.

Use of 200 load applications was an effort to avoid destroying the integrity of the specimens before applying testing sequences. Using too many load applications in the conditioning stage runs the risk of causing unrecoverable deterioration of the specimens before the actual testing begins because of high stress levels and the lengthy testing cycle of the procedure. Deviator and confining stresses were equal to 15 psi.

After placing the remolded specimen in a triaxial assembly, Figures 16 through 18, repeated loads were applied. In the procedure, 16 load sequences are used. The first test sequence involved the conditioning phase. After the conditioning sequence, 100 load applications were used for each subsequent load sequence. The average recovered deformations for each LVDT are recorded at the last five cycles. The computer data acquisition system records the mean deviator load and the mean recovered deflection. The system then calculates the mean resilient modulus by dividing the mean resilient strain by the applied deviator stress.

The specimen is loaded using a haversine shaped load form. The load pulse is in the form, $(1-\cos(x))/2$, as shown in Figure 20. A Haversine stress pulse was chosen because it better represents the shape of a truck loading on pavement and similar to the load pulse applied by nondestructive testing device, that is, the Falling Weight Deflectometer (FWD). The magnitude of the cyclic load is varied to measure the behavior in aggregate stiffness, or modulus. Before instrumenting the sample, it was visually checked for uniformity and suspected samples were rejected. A view of a resilient modulus test in progress is shown in Figure 21.

REVIEW OF MATHEMATICAL MODELS FOR RELATING RESILIENT MODULUS AND STRESSES

Mathematically, resilient modulus, M_r, has been defined as:

$$M_r = \frac{\sigma_d}{\varepsilon_a},$$

where

 $\sigma_d = \sigma_1 - \sigma_3$ = deviator stress,

 σ_1 = major principal stress,

 σ_3 = minor principal stress, and

 ε_a = axial strain recoverable after release of the deviator stress.

Deformation properties of aggregates are not constant. They are determined by both intrinsic properties of soils and the stresses applied to the soils. A number of mathematical models have been proposed for modeling the resilient modulus of soils and aggregates. Most mathematical expressions relate resilient modulus, the dependent variable, to one independent variable, either the deviator stress, σ_d , or confining stress, σ_3 , or the sum of principle stresses, σ_{sum} (= $\sigma_1 + \sigma_2 + \sigma_3$), or the

m ...

Table /. Test	ing stresses	S.			
	Confining Stress, or Cell Pressure	Deviator Stress,	Major Principle Stress,	Sum of the Principl e Stresses	Number
Test	σ_3	σ_d	σ_1	$, \theta$	of Coultral
Sequence	(ps1)	(psi)	(psi)	(psi)	Cycles
Conditioning	15	15	30	60	200
1	3	3	6	12	100
2	3	6	9	15	100
3	3	9	12	18	100
4	5	5	10	20	100
5	5	10	15	25	100
6	5	15	20	30	100
7	10	10	20	40	100
8	10	20	30	50	100
9	10	30	40	60	100
10	15	10	25	55	100
11	15	15	30	60	100
12	15	30	45	75	100
13	20	15	35	75	100
14	20	20	40	80	100
15	20	40	60	100	100

 M_r is calculated by averaging cycles 96-100 ¹The number conditioning cycles specified by in AASHTO T 307-99 ranges is 500-1000. In this study 200 conditioning load cycles were used.

Figure 21. Resilient modulus test in progress.

two independent variables, σ_d and σ_3 . Some widely published resilient modulus models are examined below. As shown by this review and analysis of available models, only the later four models are used in the analyses of resilient modulus data reported herein.

Moossazadeh and Witczak (1981)—referred to hereafter as Model 1--proposed the following relationship for presenting resilient modulus data:

$$M_r = k_1 \left(\frac{\sigma_d}{p_a}\right)^{k_2},\tag{6}$$

where k_1 (y-intercept) and k_2 (slope of the line) are coefficients obtained from a linear regression analysis and p_a is a reference pressure. In this model, the effect of the confining stress is not considered.

Dunlap (1963)--Model 2-- suggests the following relationship:

$$M_r = k_1 \left(\frac{\sigma_3}{p_a}\right)^{k_2},\tag{7}$$

where k_1 and k_2 are regression coefficients and σ_3 is the confining stress. The influence of the deviator stress is ignored in this relationship.

Seed et al. (1967)--(Model 3)-- suggests that the resilient modulus is a function of the sum of the principle stresses, or

$$M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2}.$$
(8)

The term, σ_{sum} , is the sum of principal stresses $(\sigma_1 + \sigma_2 + \sigma_3)$, or for the triaxial compression case, the term is equal to $(\sigma_1 + 2\sigma_3)$. This expression appears in the AASHTO Pavement Design Guide (1993) and in the testing standard, AASHTO T 292-91(2000). Relationships given by Equations 6 and 7 do not consider the effect of shear stress on the resilient modulus of soils.

May and Witczak (1981) and Uzan (1985) --Model 4--proposed another model that considers the effects of shear stress, confining stress, and deviator stress, or

$$M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2} \left(\frac{\sigma_d}{p_a}\right)^{k_3}.$$
(9)

The terms, k_1 , k_2 , and k_3 , are correlation regression coefficients. Under identical loading ($\sigma_1 = \sigma_2 = \sigma_3$), Uzan's model will lead to a value of M_r that either goes to zero when the

coefficient, $k_3>0$, or, M_r will become infinite in the case of $k_3<0$. In all of the models cited above, a regression fit can be made for a selected confining stress. However, when the confining stress changes, the coefficients change.

Another resilient modulus model proposed in 2002 (Ni, B., Hopkins, T. C., and Sun) and 2001 (Hopkins, T. C., Beckham, T. L., Sun, L., and Ni, B.), and referred herein as Model 5, is as follows:

$$M_{r} = k_{1} \left(\frac{\sigma_{3}}{p_{a}} + 1\right)^{k_{2}} \left(\frac{\sigma_{d}}{p_{a}} + 1\right)^{k_{3}}.$$
(10)

In this model, the coefficients, k_1 and k_2 , will always be positive. For most situations the coefficient, k_3 , is negative for soils and aggregates. As shown by the relationship given by Equation 10, the resilient modulus increases as the confining stress increases. The modulus will increase or decrease, as in most cases, with the increase of shear stress. When both σ_3 and σ_d approach zero, the value of resilient modulus, M_r , approaches the value of k_1 , which is the initial resilient modulus value and a property of the soil. How the resilient modulus of soils changes from its initial value depends on the stress path and the stress state applied to the soil mass. The coefficients, k_1 , k_2 , and k_3 , are derived from test data using multiple correlation regression analysis (See Appendix A).

Another mathematical expression appears in a summary pamphlet prepared by the research team for study NCHRP (National Cooperative Highway Research Program) Project 1-28A (Halin, 2001)—Model 6. This relationship is, as follows:

$$M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3},\tag{11}$$

where:

 σ_{sum} = sum of all orthogonal normal stresses acting at a given point (or as listed in the summary, σ_{sum} is defined using the symbol, θ , which is defined as the bulk stress).

 τ_{oct} = Octahedral shear stress acting on the material, or

$$\tau_{oct} = \frac{\sqrt{2}}{2} \left(\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} \right).$$
(12)

Equation 11 represents the more general case, that is, σ_2 is not equal to σ_3 . If σ_2 equals σ_3 , then Equation 12 becomes

$$\tau_{oct} = (\sigma_1 - \sigma_2) = (\sigma_1 - \sigma_3) = \sigma_d = deviator \quad stress$$

and Equation 11 becomes

$$M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2} \left(\frac{\sigma_d}{p_a} + 1\right)^{k_3}.$$
(13)

Equations 9 and 10 (Models 4 and 5) are based on the assumption that the normal stresses, σ_2 and σ_3 , are equal and represent a specific case (triaxial case). If σ_2 is not equal to σ_3 , then Equations 9 and 10 may be written for the more general case, or

$$M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a}\right)^{k_3},\tag{14}$$

and

$$M_{r} = k_{1} \left(\frac{\sigma_{3}}{p_{a}} + 1\right)^{k_{2}} \left(\frac{\tau_{oct}}{p_{a}} + 1\right)^{k_{3}}.$$
(15)

Consequently, Equations 9 and 10 become Equations 14 and 15.

In the resilient modulus test, the intermediate principal stress, σ_2 is equal to the minor principal stress, or confining stress, σ_3 , and the sum of the principal stresses,

$$\theta, \text{ or } \sigma_{\text{sum}} = \sigma_1 + \sigma_2 + \sigma_3 = \sigma_1 + 2\sigma_3. \tag{16}$$

The deviator stress is defined as

$$\sigma_d = \sigma_1 - \sigma_3$$

and solving for the major principal stress,

$$\sigma_1 = \sigma_d + \sigma_3. \tag{17}$$

Inserting Equation 17 into Equation 16, the sum of the principle stresses may be defined (for the triaxial case)

$$\theta = \sigma_1 + 2\sigma_3 = (\sigma_d + \sigma_3) + 2\sigma_3 = \sigma_d + 3\sigma_3 \tag{18}$$

The sum of the principle stresses appears in the resilient modulus model equations, Equations 9 and 11, proposed by Uzan and NHCRP. Values of the sum of the major principal stresses and the major principal stresses, σ_1 , corresponding to testing stresses, the confining stress, σ_3 and the deviator stress, σ_d are shown in Table 7. The various models proposed for characterizing the resilient modulus of granular materials are summarized tin Table 8.

Model Number	Reference	Independent variable	Equation
1	Moossazadeh and Witczak (1981)	σ_d (Deviator stress)	$M_r = k_1 \left(\frac{\sigma_d}{p_a}\right)^{k_2}$
2	Dunlap (1963)	σ_3 (Confining Stress)	$M_r = k_1 \left(\frac{\sigma_3}{p_a}\right)^{k_2}$
3	Seed, H.B., Mitry, F. G., Monosmith, C. L, and Chan, C. K. (1967)	σ_{sum} (Sum of the Principle Stresses)	$M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2}$
4	Uzan (1985) May, R.W. and Witczak, M. W.; (1981).	$\sigma_{\scriptscriptstyle sum}, \sigma_{\scriptscriptstyle d}$	$M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2} \left(\frac{\sigma_d}{p_a}\right)^{k_3}$
5	UKTC (Ni, Hopkins, and Sun, 2002)	$\sigma_{_3},\sigma_{_d}$	$M_r = k_1 \left(\frac{\sigma_3}{p_a} + 1\right)^{k_2} \left(\frac{\sigma_d}{p_a} + 1\right)^{k_2}$
6	NCHRP (National Cooperative Highway Research Program) Project 1-28A Halin, 2001)	$\sigma_{\scriptscriptstyle sum}, au_{\scriptscriptstyle oct}$	$M_{r} = k_{1} \left(\frac{\sigma_{sum}}{p_{a}}\right)^{k_{2}} \left(\frac{\tau_{oct}}{p_{a}} + 1\right)^{k_{2}}$
		or, if $\sigma_2 = \sigma_3$, then σ_{sum}, σ_d	or $M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2} \left(\frac{\sigma_d}{p_a} + 1\right)^{k_2}$

TEST RESULTS AND ANALYSIS

Multiple Correlation Analysis

In the relationships expressed by Equations 6, 7 and 8 (Models 1, 2, and 3), respectively, only two variables are involved, as shown in Table 8. The resilient modulus is a dependent variable while either, the deviator stress, confining stress, or the sum of the principle stresses is an independent variable. Consequently, only simple correlation analysis can be performed on those equations. The relation proposed by Model 3 was applied to the experimental data obtained from the different materials because it is a simpler model than the more complex relations expressed by Models 4, 5, and 6 (Equations 9, 10, and 11). Model 3, (Equation 8) is a linear model between the

resilient logarithms of the modulus and sum of the principle stresses. Although the equation for Model 3 contains only one independent variable, θ , the confining stress, σ_3 , and the deviator stress, σ_d , are included in the θ -term. It can be presented conveniently in two-dimensional graph, а whereas the results of Models 4, 5, an 6 must be presented in a three-dimensional graph, as discussed below. Results of Model 3 analysis were included herein and compared to results obtained from Models 4, 5, and 6

In the testing procedure, however, the value of resilient modulus is an independent variable and a function of two

independent variables, the confining stress, σ_3 , and the deviator stress, σ_d . Models 4, 5, and 6, expressed by Equations 9, 10, and 11, respectively, involve two independent variables. The resilient modulus is the dependent variable and the sum of the principle stresses and deviator stress are independent variables in Model 4. In Model 5, the resilient modulus is the dependent variable while the deviator stress and confining stress are independent variables. In Model 6, the resilient modulus is the dependent variable and the sum of the principle stresses and the deviator stresses are the independent variables. Hence, the regression equations of the three models represent a regression plane in a three-dimensional rectangular coordinate system, as illustrated in Figure 22.

Resilient Modulus Test Data and Regression Coefficients of Models 3, 4, 5, and 6

In the multiple regression correlation analysis of Models 4, 5, and 6, all values of M_r obtained at the 15 selected testing stresses (See Table 7) were used, collectively, to obtain the coefficients, k_1 , k_2 , and k_3 of the multiple regression plane, as illustrated in Figure 22. The coefficient of multiple

correlation, R^2 , was determined for each of the tests and for each model. This coefficient describes how well the testing points "fit" the regression plane. Multiple regression coefficients, k_1 , k_2 , and k_3 were determined for the compacted aggregates and all of the materials in this manner. The multiple regression equations used to obtain the coefficients, k_1 , k_2 , and k_3 are given in Appendix A.

Multiple regression coefficients, k_1 , k_2 , and k_3 determined from Models 4, 5, and 6, for the compacted aggregates and other materials are summarized in Tables 9 and 10. Coefficients, k_1 and k_2 , obtained from linear regression analysis using Model 3 are also included in the summary tables. Dry densities and moisture contents of each specimen were listed in Tables 4 and 5. Values of R^2 of the four models (3, 4, 5, and 6) are also listed. Percentile test values as a function of R^2 for Models 3, 4, 5, and 6 are compared in Figure 23. Excluding R^2 -values of the asphalt drainage blanket and PVC tests, the average R^2 -values obtained from Models 4, 5, and 6 for the aggregate materials were identical, or numerically equal to 0.992. The average R^2 -value for Model 3 was equal to 0.947.

Obtaining large values of R^2 indicates that the testing equipment was very stable, operator error was not pronounced, and the model equations consistently provided a good means of fitting the

regression plane.

Resilient modulus models proposed by Uzan, UKTC, and NCHRP are nonlinear material models. Practically, when any nonlinear material model is built into a numerical analyzing program an iteration procedure will be used as the method of solution. Although the average R²-values of Models 4, 5, and 6 were identical, situations may arise where values of the resilient modulus computed from Models 4 and 6 may diverge. This case may happen on the pavement surface area located away from the loading location. It could represent a potential problem when the models may be applied in nonlinear analyses. For example, whenever the coefficient k₂ or k₃ is negative in Uzan's model (Model 4), and σ_{sum} or σ_d approaches zero, the resilient modulus may diverge, or become very large. This situation is illustrated depicted in Figure 24. In the case of a small value of σ_d , a normal situation for an area located away from the loading area, M_r may become unstable. In the test data shown in Tables 9 and 10 for the granular materials included in the testing program, all of the k₂- coefficients from Uzan's model were positive. However, all of the k₃-coefficients were negative for that model.

Table 9. Coefficients k _i and R ² of aggregate samples for four different resilient modulus models															
Sample	¹ Seed et al. Model 3		Uz	an's N	lodel 4		U	КТС М	lodel 5		NC	HRPN	lodel (6	
	k 1	k ₂	R ²	k ₁	k ₂	k ₃	R ²	k 1	k ₂	k ₃	R²	k 1	k ₂	k ₃	R ²
DGA-4531-1-3-1	1759.64	0.7961	0.948	1342.78	1.0930	-0.3222	0.988	4314.77	0.8294	0.0527	0.995	1521.27	1.0797	-0.3396	0.985
DGA-4531-1-4-1	2222.16	0.7268	0.967	1809.49	0.9553	-0.2491	0.997	4952.76	0.7291	0.0788	0.997	1984.06	0.9533	-0.2724	0.997
DGAVULLEX-4531-1-31-1	1571.29	0.8449	0.977	1292.46	1.0486	-0.2241	0.995	3882.75	0.8185	0.1216	0.992	1411.07	1.0497	-0.2511	0.996
DGAVULLEX-4531-1-32-1	2099.46	0.7298	0.969	1754.61	0.9157	-0.2042	0.990	4594.43	0.7199	0.0937	0.995	1903.60	0.9134	-0.2247	0.990
DGAVULLEX-4531-1-33-1	4198.88	0.6609	0.984	3697.82	0.7923	-0.1443	0.997	8458.27	0.6208	0.1165	0.998	3915.90	0.7910	-0.1591	0.997
DGAVULLEX-4531-1-34-1	4349.92	0.5952	0.936	3424.46	0.8414	-0.2695	0.989	8692.36	0.6581	-0.0086	0.989	3805.87	0.8425	-0.3017	0.990
DGAUPPER-4531-1-60-1	4914.80	0.6015	0.943	3988.22	0.8154	-0.2339	0.982	9711.83	0.6357	0.0250	0.982	4368.61	0.8176	-0.2634	0.983
DGACENTER-4531-1-61-1	1039.13	0.9096	0.979	933.00	1.0211	-0.1223	0.984	2662.71	0.7947	0.2215	0.975	972.63	1.0331	-0.1509	0.985
DGALOWER-4531-1-62-1	1310.91	0.8908	0.967	1043.98	1.1260	-0.2578	0.989	3481.78	0.8717	0.1112	0.981	1154.47	1.1275	-0.2891	0.990
CSBUPPER-4531-1-63-1	2120.44	0.7259	0.976	1837.94	4 0.8716	-0.1591	0.989	4568.77	0.6768	0.1332	0.992	1960.00	0.8685	-0.1735	0.988
CSBCENTER-4531-1-64-1	3359.02	0.6835	0.987	3013.63	3 0.7973	-0.1253	0.996	6764.21	0.6226	0.1456	0.997	3170.99	0.7939	-0.1354	0.996
CSBLOWER-4531-1-65-1	2388.78	0.7494	0.977	2056.79	9 0.9032	-0.1683	0.991	5295.43	0.7001	0.1337	0.987	2198.65	0.9030	-0.1874	0.991
No57VULLEX-4531-1-58-1	5513.42	0.5462	0.945	4556.00	0.7426	-0.2152	0.985	10292.80	0.5772	0.0206	0.978	4951.27	0.7456	-0.2435	0.987
No57VULLEX-4531-1-58-2	13149.25	0.3657	0.647	8481.14	0.8151	-0.4916	0.966	22806.48	0.6307	-0.2571	0.965	10323.73	0.8093	-0.5407	0.965
No57VULLEX-4531-1-58-3	4641.68	0.5712	0.914	3466.15	0.8710	-0.3281	0.996	9216.96	0.6742	-0.0549	0.993	3953.28	0.8668	-0.3605	0.995
No57VULLEX-4531-1-58-4	5789.70	0.5388	0.931	4533.73	0.7892	-0.2736	0.996	10887.82	0.6096	-0.0223	0.994	5060.40	0.7851	-0.2999	0.995
No57VULLEX-4531-1-58-5	6469.16	0.5086	0.891	4844.99	0.8057	-0.3252	0.992	12191.57	0.6273	-0.0820	0.987	5501.08	0.8064	-0.3630	0.994
No57VULLEX-4531-1-58-6	5646.00	0.5452	0.954	4636.43	0.7467	-0.2202	0.997	10486.04	0.5784	0.0201	0.998	5070.02	0.7418	-0.2394	0.996
No57VULLEX-4531-1-57-1	6301.08	0.5450	0.951	5173.48	0.7475	-0.2215	0.994	11663.27	0.5822	0.0175	0.998	5654.46	0.7443	-0.2429	0.993
No57VULLEX-4531-1-57-2	6680.77	0.5301	0.893	4933.48	0.8447	-0.3453	0.995	12704.35	0.6547	-0.0798	0.994	5672.02	0.8380	-0.3766	0.993
No57VULLEX-4531-1-57-3	7070.83	0.5396	0.935	5606.04	0.7782	-0.2611	0.996	13335.70	0.6046	-0.0175	0.993	6221.09	0.7752	-0.2872	0.996
No57VULLEX-4531-1-57-4	6345.04	0.5366	0.904	4754.75	0.8294	-0.3192	0.992	12158.70	0.6408	-0.0601	0.994	5409.44	0.8232	-0.3481	0.990
No57VULLEX-4531-1-57-5	8323.90	0.4987	0.874	6100.34	0.8154	-0.3457	0.990	15610.51	0.6305	-0.0968	0.987	7004.44	0.8113	-0.3802	0.990
1. 1967; DGA—Dense G	Graded Agg	regate;	No. 57	—Numł	oer 57 c	rushed	limest	one							

Sample	¹ Seed et	al. Mode	3	U	zan's Mo	odel 4		ι	JKTC Mo	del 5		NC		lodel 6	
	k 1	k ₂	R ²	k 1	k ₂	k ₃	R ²	k 1	k ₂	k ₃	R ²	k 1	k ₂	k ₃	R
GRAV-4531-1-21-1	2121.85	0.7432	0.979	1807.14	0.9087	-0.1815	0.995	4697.10	0.7105	0.1169	0.999	1946.13	0.9034	-0.1957	0.9
GRAV-4531-1-22-1	1568.11	0.8063	0.989	1429.24	0.9000	-0.1021	0.993	3683.06	0.7038	0.1914	0.993	1484.90	0.9033	-0.1177	0.
RAV-4531-1-23-1	1723.56	0.8084	0.978	1409.65	1.0146	-0.2257	0.999	4141.86	0.7862	0.1102	0.997	1543.80	1.0109	-0.2470	0.
RAV-4531-1-24-1	1709.45	0.7831	0.955	1330.89	1.0420	-0.2848	0.989	4045.26	0.8148	0.0558	0.993	1489.06	1.0408	-0.3157	0
RAV-4531-1-25-1	1659.99	0.7733	0.973	1408.25	0.9426	-0.1855	0.988	3811.96	0.7386	0.1207	0.992	1517.17	0.9394	-0.2027	0
RAV-4531-1-26-1	2513.82	0.7124	0.986	2216.76	0.8420	-0.1420	0.997	5352.40	0.6610	0.1321	0.998	2345.37	0.8410	-0.1570	0
CON-4531-1-11-1	2613.47	0.7472	0.930	1875.26	1.0821	-0.3643	0.992	6401.58	0.8383	-0.0317	0.990	2158.78	1.0862	-0.4108	C
CON-4531-1-12-1	3109.75	0.6512	0.956	2498.14	0.8764	-0.2466	0.993	6432.38	0.6827	0.0360	0.997	2761.70	0.8710	-0.2683	(
CON-4531-1-13-1	1890.79	0.7662	0.961	1486.23	1.0115	-0.2681	0.994	4459.98	0.7890	0.0551	0.996	1651.10	1.0120	-0.2993	(
CON-4531-1-14-1	2099.50	0.7285	0.959	1671.54	0.9593	-0.2520	0.990	4718.75	0.7451	0.0603	0.994	1844.57	0.9602	-0.2818	(
CON-4531-1-15-1	2566.12	0.6997	0.960	2070.61	0.9191	-0.2402	0.990	5576.41	0.7190	0.0550	0.997	2278.56	0.9163	-0.2641	(
CON-4531-1-16-1	2941.20	0.6884	0.965	2391.80	0.9007	-0.2323	0.995	6278.59	0.7003	0.0612	0.997	2625.96	0.8974	-0.2549	(
CON-4531-1-17-1	2858.13	0.6739	0.966	2353.13	0.8729	-0.2178	0.994	6052.94	0.6818	0.0610	0.995	2563.94	0.8726	-0.2423	(
B-4531-1-66-1	277849.82	-0.0758	0.1022	12691.92	0.1967	-0.2973	0.545	293226.32	0.1559	-0.2693	0.575	237637.10	0.2076	-0.3445	C
′C-4531-1-41-1	3031.36	0.9074	0.974	2639.12	1.0461	-0.1505	0.982	7992.03	0.8108	0.1940	0.985	2813.54	1.0376	-0.1574	С
′C-4531-1-42-1	3310.05	0.8766	0.965	2998.30	0.9778	-0.1108	0.970	8339.85	0.7725	0.2032	0.976	3153.60	0.9654	-0.1084	(
C-4531-1-43-1	3341.24	0.8776	0.953	2956.61	0.9996	-0.1323	0.960	8474.36	0.7727	0.2014	0.967	3141.95	0.9843	-0.1289	(
C-4531-1-44-1	3503.52	0.8637	0.959	3157.70	0.9668	-0.1116	0.964	8586.10	0.7427	0.2214	0.971	3329.91	0.9510	-0.1053	(
C-4531-1-45-1	3641.73	0.8514	0.960	3378.21	0.9287	-0.0847	0.963	8638.64	0.7290	0.2281	0.972	3518.89	0.9143	-0.0767	(

.2

Figure 24. Regression plane of Model 4 and potential divergence problems at small stresses.

When k_2 is negative in the **NCHRP** model and σ_{sum} becomes small. or approaches zero, Mr may become large and diverge. This potential problem is illustrated in Figure 25. It should be noted, however, that for granular materials included in the testing program all k₂-coefficients¹ were positive, as shown in Tables 8 and 9.

In the UKTC Model, when the values, σ_3 and σ_d become small, or approach zero, the value of M_r approaches the value of k₁. As illustrated in Figure 26, the value of Mr approaches a point in the three-dimensional graph. If σ_3 is not equal to zero and σ_d approaches zero, then M_r is a line in the M_r- σ_3 plane. The value of M_r approaches the term,

$$k_1 \left(\frac{\sigma_3}{p_a} + 1\right)^{k_2}$$

If σ_d is not equal to zero and σ_3 approaches zero, then M_r is a line in the M_r- σ_d plane. The value of M_r approaches the term,

$$k_1 \left(\frac{\sigma_d}{p_a} + 1\right)^{k_3}$$

In any of the three cases listed above, M_r converges to a value and remains stable.

¹ On rare occasions, negative values of k_2 obtained from the NCHRP model have been observed for resilient modulus tests performed on compacted specimens of soil. Negative k_2 -coefficients were obtained for two cases of 68 unsoaked (or "as compacted") specimens that were tested. Negative k_2 -coefficients were also obtained for two cases of 60 soaked compacted specimens that were tested. Multiple coefficients of correlations of those four specimens were 0.930, 0.958, 0.650, and 0.993, respectively.

Coefficients of correlation indicate that Models 4, 5, and 6 best describes variation of the resilient modulus. An average value of R^2 obtained from each model was equal to 0.992. If a slightly lower error may be tolerated, then Model 3 could be used, provided divergence of M_{r.} given by the model equation is not a problem. An average value of R^2 was only slightly less than 0.95. Typical graphical relations from Model 3 of M_r as a function of σ_{sum} for DGA specimens are shown in Figures 27 and 28. Similar results may be obtained for the other aggregates. Some data scatter is evident, as shown in

the figures. Negative values of k_2 obtained from Model 3, which could cause M_r to diverge, were not observed for the granular materials included in this testing program.

Numerical values of resilient modulus predicted by Models 3, 4, 5, and 6 are compared in Tables 11, 12, and 13. Average values of resilient modulus obtained for the granular materials for the

Figure 27. Results of Regression analyses from Model 3 for DGA specimens blended and remolded to gradation specification limits.

selected stresses, σ_3 and σ_d are shown in those tables. Values of M_r were computed at three selected stresses of σ_3 and σ_d , as shown in the three tables. The values of stresses selected for comparative purposes represent low, about midrange, and high values of σ_3 and σ_d listed previously in Table 7. Values of σ_{sum} which appear in Models 4 and 6 were computed from stresses selected for σ_3 and σ_d using Equations 16, 17, and 18.

Percentage differences of average numerical values (shown in Tables 11, 12, and 13) of resilient modulus obtained from Models 3, 4, 5, and 6 are summarized in Table 14.

Percentages differences of the average resilient modulus values (granular materials) obtained from the different models are shown relative to the average value of resilient modulus obtained from Model 5 (UKTC). Average values of resilient modulus from Model 3 ranged from 7.6 percent larger and 10.5 percent smaller than average values of resilient modulus from Model 5. Average values of resilient modulus from Model 6 ranged from 0.3 to 5 percent smaller than values from Model 6. Models 4, 5, and 6 yielded very similar values of resilient modulus for the range of selected stresses.

Storage and Accessibility of Values of Resilient Modulus of Compacted Aggregates

All resilient modulus test data pertaining to the compacted aggregate specimens resides in the Kentucky Geotechnical Database (Hopkins et al., 2005). The program, using this database, is in a client/server "Windows" environment and the database resides on a production server of the Kentucky Transportation Cabinet. Values of resilient modulus in the database are readily available to personnel of the Kentucky Transportation Cabinet statewide. All key district and central office personnel can access the data through the client-server network.

Users have two means of accessing data on the client-server application in the Geotechnical Database. After the user logs on (Figure 29), the graphical user interface (GUI) shown in Figure 30 appears. By clicking on "Engineering Application", another menu appears as shown in Figure 31. After clicking on "Resilient Modulus," the GUI screen in Figure 32 appears. By clicking on an aggregate type under "Sample Information," shown in the left-hand portion of Figure 32, two-dimensional plots of resilient modulus as a function of a selected stress component appears. In the current analytical version, values of resilient modulus for a selected specimen may be plotted as a

Table 11.	Comparison of numerical values of M _r obtained from Models 3, 4, 5, and 6
	and calculated at stresses of $\sigma_3 = 3$ and $\sigma_d = 3$.

			Model 3	Model 4	Model 5	Model 6
			Seed's Model	I Izan's Model		NCHRP
Sample Description		Sample Number		020113100000	0110	NOTIKI
				σ_{sum} = 12 psi	σ ₃ = 3 psi	σ _{sum} = 12 psi
			σ _{sum} = 12 psi	σ _d = 3 psi	σ _d = 3 psi	σ _d = 3 psi
				Resilient Mod	ulus, M _r (psi)	
		DGA-4531-1-3-1	12722	14250	14657	13898
	As	DGA-4531-1-4-1	13523	14779	15179	14532
Donso Gradod	Received	DGAVULLEX-4531-1-31-1	12823	13681	14293	13527
Agaregate		DGAVULLEX-4531-1-32-1	12874	13645	14193	13490
(DGA)		DGAVULLEX-4531-1-33-1	21695	22601	23506	22422
		DGAVULLEX-4531-1-34-1	19092	20608	21388	20325
	Specification	DGAUPPER-4531-1-60-1	21908	23396	24271	23126
	Limits	DGACENTER-4531-1-61-1	9961	10315	10893	10280
	Linito	DGALOWER-4531-1-62-1	11991	12908	13601	12738
Crushod St	tono Baso	CSBUPPER-4531-1-63-1	12878	13460	14043	13337
Crusheu S	lone base	CSBCENTER-4531-1-64-1	18358	19043	19621	18899
		CSBLOWER-4531-1-65-1	15379	16129	16823	15989
		No57VULLEX-4531-1-58-1	21422	22767	23575	22530
	As	No57VULLEX-4531-1-58-2	32622	37458	38281	36449
		No57VULLEX-4531-1-58-3	19189	21051	21749	20670
	Received	No57VULLEX-4531-1-58-4	22085	23856	24577	23490
		No57VULLEX-4531-1-58-5	22894	25097	25963	24669
No. 57 Stone		No57VULLEX-4531-1-58-6	21884	23278	24041	22983
		No57VULLEX-4531-1-57-1	24411	25989	26784	25668
	Repeats	No57VULLEX-4531-1-57-2	24939	27542	28189	27000
		No57VULLEX-4531-1-57-3	27029	29100	30094	28677
		No57VULLEX-4531-1-57-4	24074	26297	27196	25820
		No57VULLEX-4531-1-57-5	28745	31650	32714	31046
		RGRAV-4531-1-21-1	13451	14159	14790	14005
		RGRAV-4531-1-22-1	11630	11958	12740	11903
River (Fravel	RGRAV-4531-1-23-1	12847	13689	14351	13515
River	Slavel	RGRAV-4531-1-24-1	11965	12965	13524	12766
		RGRAV-4531-1-25-1	11342	11951	12546	11824
		RGRAV-4531-1-26-1	14763	15369	16071	15250
		RECON-4531-1-11-1	16733	18494	19584	18159
		RECON-4531-1-12-1	15683	16817	17421	16581
		RECON-4531-1-13-1	12691	13670	14372	13481
Recycled	Concrete	RECON-4531-1-14-1	12831	13745	14412	13566
		RECON-4531-1-15-1	14600	15609	16306	15400
		RECON-4531-1-16-1	16271	17374	18044	17151
		RECON-4531-1-17-1	15251	16209	16950	16022
Average Mr-	Values (Grani	ular Materials)	17571	18914	19632	18644
Asphalt Drain	nage Blanket	ADB-4531-1-66-1	230159	250137	250570	246912
		PVC-4531-1-42-1	28899	30101	32182	29802
		PVC-4531-1-42-1	29233	30146	32254	29880
PVC C	ylinder	PVC-4531-1-43-1	29579	30649	32702	30327
		PVC-4531-1-44-1	29961	30866	32677	30573
		PVC-4531-1-45-1	30207	30939	32559	30685

Table 12.	Comparison of numerical values of M _r obtained from Models 3, 4,	5, and 6
	and calculated at stresses of $\sigma_3 = 10$ and $\sigma_d = 20$.	

			Model 3	Model 4	Model 5	Model 6NCHRP
Sample	Description	Sample Number	Seed's Model	Uzan's Model	UKTC	Model 6
			σ _{sum} = 50 psi	σ_{sum} = 50 psi σ_{d} = 3 psi	σ_3 = 10 psi σ_d = 20 psi	σ_{sum} = 50 psi σ_{d} = 3 psi
				Resilient Modu	lus, Mr (psi)	
		DGA-4531-1-3-1	39625	36795	37014	36945
	A a	DGA-4531-1-4-1	38153	36016	36167	36059
	Received	DGAVULLEX-4531-1-31-1	42819	39939	40022	39898
Dense Graded		DGAVULLEX-4531-1-32-1	36479	34218	34342	34223
(DGA)		DGAVULLEX-4531-1-33-1	55717	53248	53434	53254
		DGAVULLEX-4531-1-34-1	44645	41066	41031	41013
	Creation	DGAUPPER-4531-1-60-1	51687	48063	48125	47990
	Limits	DGACENTER-4531-1-61-1	36480	35122	35139	34965
		DGALOWER-4531-1-62-1	42751	39475	39502	39420
Omisha i C	tono Doss	CSBUPPER-4531-1-63-1	36288	34527	34732	34547
Crushed S	Sione Base	CSBCENTER-4531-1-64-1	48690	46845	46892	46879
		CSBLOWER-4531-1-65-1	44813	42534	42634	42515
		No57VULLEX-4531-1-58-1	46707	43677	43738	43602
		No57VULLEX-4531-1-58-2	54972	47174	47307	MOGEI 6NCHRP Model 6 $\sigma_{sum} = 50 \text{ psi}$ $\sigma_d = 3 \text{ psi}$ 36945 36059 39898 34223 53254 41013 47990 34965 39420 34547 46879 42515 43602 47194 39171 43804 42710 44542 49633 47811 53848 46933 52607 36750 35543 37974 33402 32287 39035 43297 36832 34785 33469 36748 40449 37244 41038 187549 100922 99006 99784
	As	No57VULLEX-4531-1-58-3	43356	39155	39274	
	Received	No57VULLEX-4531-1-58-4	47647	43785	43882	
		No57VULLEX-4531-1-58-5	47308	42762	42747	
No. 57 Stone		No57VULLEX-4531-1-58-6	47649	44496	44620	44542
		No57VULLEX-4531-1-57-1	53136	49612	49689	49633
		No57VULLEX-4531-1-57-2	53138	47756	47889	47811
	Repeats	No57VULLEX-4531-1-57-3	58385	53839	53889	53848
		No57VULLEX-4531-1-57-4	51779	46878	47070	46933
		No57VULLEX-4531-1-57-5	58570	52593	52726	52607
	•	RGRAV-4531-1-21-1	38847	36704	36839	36750
		RGRAV-4531-1-22-1	36755	35591	35663	35543
Diver	Crouol	RGRAV-4531-1-23-1	40722	37953	38163	37974
River	Graver	RGRAV-4531-1-24-1	36579	33415	33826	33402
		RGRAV-4531-1-25-1	34198	32269	32353	32287
		RGRAV-4531-1-26-1	40807	39040	39046	39035
		RECON-4531-1-11-1	48604	43406	43388	43297
		RECON-4531-1-12-1	39720	36793	36892	36832
		RECON-4531-1-13-1	37874	34817	34982	34785
Recycled	Concrete	RECON-4531-1-14-1	36286	33503	33845	33469
		RECON-4531-1-15-1	39626	36738	36969	36748
		RECON-4531-1-16-1	43460	40435	40557	40449
		RECON-4531-1-17-1	39899	37266	37380	37244
Average Mr-Val	ues (Granular N	Aaterials)	44283	41042	41160	41038
Asphalt Drai	nage Blanket	ADB-4531-1-66-1	206566	188427	187708	187549
		PVC-4531-1-42-1	102138	100681	100816	100922
		PVC-4531-1-42-1	102138	98622	98698	99006
PVC C	Sylinder	PVC-4531-1-43-1	103491	99302	99790	99784
		PVC-4531-1-44-1	102767	99252	99995	99752
		PVC-4531-1-45-1	101810	99157	99362	99623

Table 13.	Comparison of numerical values of M ₁	r obtained from Models 3, 4, 5, and
	6 calculated at stresses of $\sigma_3 = 20$ and	$d \sigma_d = 40.$

	• ••••••			A ou lot	Madal 5	Ma dal
			Model 3	Model 4	Model 5	6NCHRP
Sample De	scription	Sample Number	Seed's Model	Uzan's Model	UKTC	Model 6
			σ = 100 psi	Nodel 3Model 4Model 5Model 3Model 4Model 5 $\sigma_{sum} = 100 \text{ psi}$ $\sigma_3 = 20 \text{ psi}$ $\sigma_3 = 20 \text{ psi}$ $\sigma_{sum} = 100 \text{ psi}$ $\sigma_3 = 20 \text{ psi}$ $\sigma_3 = 40 \text{ psi}$ $\sigma_{sum} = 100 \text{ psi}$ $\sigma_3 = 20 \text{ psi}$ $\sigma_3 = 40 \text{ psi}$ $\sigma_{sum} = 100 \text{ psi}$ $\sigma_3 = 20 \text{ psi}$ $\sigma_3 = 40 \text{ psi}$ $\sigma_d = 40 \text{ psi}$ $\sigma_d = 40 \text{ psi}$ $\sigma_d = 40 \text{ psi}$ 63805 62780 65554 63139 58760 61089 76906 70729 73704 60497 56032 58239 88093 83439 86299 67447 61043 62434 78423 71921 73817 68530 65486 68128 79267 72058 74769 60020 56577 58817 78197 74637 77313 75335 70789 73319 68203 62954 64408 70830 59031 59887 64415 57044 58545 69220 62594 64121 67304 59663 60707 69531 64093 65736 77528 71438 73255 76732 67509 69328 84868 77047 78742 75109 66765 68428 82759 72832 74295 65025 60760 63067 64277 61878 59468 58452 545	$\sigma_{sum} = 100 \text{ ps}$ $\sigma_{d} = 40 \text{ psi}$	
				Resilient Modu	lus. Mr (psi)	- u
		DGA-4531-1-3-1	68805	62780	65554	62216
	A a	DGA-4531-1-4-1	63139	58760	61089	58188
Dense	AS Received	DGAVULLEX-4531-1-31-1	76906	70729	73704	69820
Graded		DGAVULLEX-4531-1-32-1	60497	56032	58239	55460
aggregate		DGAVULLEX-4531-1-33-1	88093	83439	86299	82840
(DGA)		DGAVULLEX-4531-1-34-1	67447	61043	62434	60100
	Constitution	DGAUPPER-4531-1-60-1	78423	71921	73817	70915
	n Limits	DGACENTER-4531-1-61-1	68530	65486	68128	64681
		DGALOWER-4531-1-62-1	79267	72058	74769	70979
Cruched St	Deee	CSBUPPER-4531-1-63-1	60020	56577	58817	56161
Crushed Std	one base	CSBCENTER-4531-1-64-1	78197	74637	77313	74238
		CSBLOWER-4531-1-65-1	75335	70789	73319	70133
		No57VULLEX-4531-1-58-1	68203	62954	64408	62116
		No57VULLEX-4531-1-58-2	70830	59031	59887	Integration of the second
	As	No57VULLEX-4531-1-58-3	64415	57044	58545	
	Received	No57VULLEX-4531-1-58-4	69220	62594	64121	61761
No. 57 Stone		No57VULLEX-4531-1-58-5	67304	59663	60707	58588
		No57VULLEX-4531-1-58-6	69531	64093	65736	63461
		No57VULLEX-4531-1-57-1	77528	71438	73255	70672
		No57VULLEX-4531-1-57-2	76732	67509	69328	66430
	Repeats	No57VULLEX-4531-1-57-3	84868	77047	78742	76046
		No57VULLEX-4531-1-57-4	75109	66765	68428	65787
		No57VULLEX-4531-1-57-5	82759	72832	74295	71580
	-	RGRAV-4531-1-21-1	65025	60760	63067	60305
		RGRAV-4531-1-22-1	64277	61878	63896	61443
DiverC	raval	RGRAV-4531-1-23-1	71314	65573	68305	64868
River G	lavei	RGRAV-4531-1-24-1	62944	56478	59468	55636
		RGRAV-4531-1-25-1	58452	54538	56546	54066
		RGRAV-4531-1-26-1	66864	63420	65401	62951
		RECON-4531-1-11-1	81583	71389	73043	69836
		RECON-4531-1-12-1	62377	56931	58764	56295
		RECON-4531-1-13-1	64415	58287	60454	57421
Recycled C	Concrete	RECON-4531-1-14-1	60121	54701	57051	53928
		RECON-4531-1-15-1	64358	58814	61057	58120
		RECON-4531-1-16-1	70035	64264	66453	63532
		RECON-4531-1-17-1	63653	58684	60511	57987
Average Mi	r-Values (Gi	anular Materials)	70183	64193	66249	63397
Asphalt Draina	age Blanket	ADB-4531-1-66-1	195996	175735	173386	171993
		PVC-4531-1-42-1	197898	187305	193907	186467
		PVC-4531-1-42-1	187533	179873	186333	179796
PVC Cy	linder	PVC-4531-1-43-1	190145	181151	188192	181097
		PVC-4531-1-44-1	187002	179548	187447	179724
		1 00-4001-1-44-1	101002			110121

relative to Model 5 for granular materials included in the testing program.							
Model	σ_3 = 3 psi	Percent Difference	σ_3 = 10 psi	Percent Difference	σ_3 = 10 psi	Percent Difference	
	σ_d = 3pi	Difference	σ_d = 20 psi	Difference	σ_d = 20 psi	Difference	
	σ_{sum} =12		σ_{sum} = 50 psi		$\sigma_{sum} = 50$		
	psi				psi		
	/ .		M _r (psi)				
	M _r (psi)		- 4 /		M _r (psi)		
Seed (Model 3)	17571	-10.5	44283	7.6	70183	5.9	
Uzan (Model 4)	18914	-3.7	41042	-0.3	64193	-3.1	
UKTC (Model 5)	19632	0	41160	0	66249	0	
NCHRP (Model 6)	18644	-5	41038	-0.3	63397	-4.3	

Table 14 Comparison of average values of resilient modulus and percent difference

function of either the confining stress, σ_3 , the deviator stress, σ_d , or the sum of the principle

stresses, σ_{sum} . In Figure 32, the resilient modulus is shown as a function of the deviator stress. By clicking "Check Model", the user may select a model type from a dropdown menu and graph the data. Coefficients (k1, k2, or k3) of each model equation are displayed at the bottom of the GUI screen in Figure 32. Each time the user clicks on a specimen number in the left-hand portion of Figure 32, multiple regression analysis is automatically performed using the three different models

shown in the right-hand portion of Figure 32. The coefficients of each model are displayed for each three-dimensional plane. Multiple regression equations used in the database are presented in Appendix A.

The user may also recall and display resilient modulus test data by clicking "Data" under the "Show" button on a dropdown menu, as illustrated in Figure 33. In this case, the data are displayed as shown in that figure; an enlarged view of the summary data is displayed in Figure 34. The tabulations show the specimen number, sequence number, values of resilient modulus for each test sequence, the confining stresses, σ_3 , the deviator stresses, σ_d , and the sum of the principle stresses, σ_{sum} , for each test sequence. Although the data for each aggregate specimen shown in Figure 34 resides in the Kentucky Geotechnical Database, the summary data for each specimen are also given in Appendices B through H.

If the user chooses to view the entire test data record of resilient modulus of a selected specimen in the database, then the following procedure is available:

Kentucky Geotechnical Database and resilient modulus data.

GEOTECHNICAL DATABASE	
File Tools Window Help	
😹 Main Menu	
Search Existing Data Search Existing Data Cet Database Reports Cet Database Reports Cet Database Reports Engineering Application Email Service Exit This Database Encileering Application Encileering Application	Application
Figure 31. Gaining access to resilient modulus	s test results for compacted

Figure 31. Gaining access to resilient modulus test results for compacted soils and aggregates in the Kentucky Geotechnical Database.

Sit Row	e num	Hole Id	Sar Id	nple No	Mr	Test No Sigma3	Sigma dn	Sigma Sum*
- 4	531	1	3	1	16477	1 3	3	12.046
				2	14968		6	14.923
				3	14906		9	17.973
				- 4	19969	5	5	20.27
				- 5	20951		10	25.064
				6	21607		15	29.941
				7	35280	10	10	39.913
				8	37524		20	50.335
				9	38354		30	60.042
				10	46887	15	10	54.992
				11	48620		15	59.874
				12	52937		30	75.034
				13	62378	20	15	74.86
				14	64680		20	80.166
				15	67226		40	99.732
* - Si	gma -	Sum is	calcula	ted fro	om test da	ta		

Figure 34. View of resilient modulus test data for a selected aggregate specimen.

- In the database's main menu, Figure 30, the user clicks on "Search Existing data." When this event is executed, a GUI (Graphical User Interface) screen appears as shown in Figure 35. All resilient modulus data of aggregates are stored in a site labeled "4531". Consequently, the number "4531" will appear in all aggregate specimen identification numbers, as shown in Figure 32.
- Using the row number (or site number) shown in Figure 34 ("4531"), and inserting this number into the box labeled "Site Row Number" in the GUI shown in Figure 35, and clicking the search button, a GUI screen appears, as shown in Figure 36. Clicking on "Samples" in the upper right-hand corner of Figure 36, listings of specimen numbers appear in the lower right-hand corner of this figure. By double-clicking on any desired specimen number in the lower right-hand corner of Figure 36, the GUI screen shown in Figure 37 appears.
- By clicking the "Properties" tab in Figure 37, the GUI screen shown in Figure 38 appears. Clicking on the folder labeled "Resilient Modulus" obtains detailed resilient modulus data for a selected specimen number, as illustrated in Figure 39.

Figure 36. Gaining access to resilient modulus test record for a selected specimen in the Kentucky Geotechnical Database.

GEOTECHNICAL DATABASE - [SAMPLE] Image: File Edit Window Help	× ₽ _ ■
] 🗅 🖬 🖨 🛍 ፋ ▶ 👗 🖻 🛍 🛄 🛌 🚽 🙀 (Click)	
Site Infor. Work Phase Location/Hole Sample Properties Analyzer Roadway	
Metric © English (ft.) Depth Elevation © Rock (ft.) Depth Elevation © Visual Description 3 To Top 1 © Artificial Fill Sample 3 To Bottom 1 Sampling Method 1 Sampling Control 1 1 1 1 Comments 0 0 0 0 0 0 0 0	
Figure 37. GUI screen for accessing the complete resilient modulus test data.	

GEOTECHNICAL DATABA	SE - [SAMPLE]					<u>- 8 ×</u>
] 🗅 🖬 🖨 🗞 🐿 🔸 🕨 👗	là 🛍 🎦 🛛 🕫					
Site Infor. Work Phase	Location/Hole Sample	Properties	∾Analyzer	Roadway		
Soil Properties Classification Grain Size CBR Lab Strength Moisture/Den. Consolidation Visual Desc. Resilient Modulus	Blow Counts 1 Blow Counts 2 Blow Counts 3 Penetration at Refusal	N = in Natural AASH Un	Specific Gi Non-P Liquid Plasticity I Moisture Co Shrinkage ITO Classific ified Classific Activity I Liquiditity I	ravity	mm	Metric English Next Previous First Last Add Delete
Figure 38. GUI sc	reen for obtaining	g detailed	resilient	modulus tes	st data.	

Variation of Resilient Modulus and Dry Density

Because dry densities of different types of aggregates vary in the field, numerous resilient modulus tests were performed on selected aggregate types to determine the effect of the variation of dry density on the values of resilient modulus. Aggregate types included Dense Graded Aggregate, Crushed Stone Base, No. 57 Stones, River Gravel, and Recycled Concrete.

Resilient modulus test results obtained for specimens of the dense graded aggregate (as received from the producer) compacted at different dry densities are shown in Figure 40. Values of resilient modulus shown in Figure 40 are those obtained from Model 5 (UKTC), which are listed Tables 11, 12, and 13. The maximum dry density and optimum moisture content (Figure 9) of this "well graded" material were 142.2 lbs/ft³ and 6.8 percent, respectively. In this plot, resilient modulus values of DGA specimens were calculated at three selected stress conditions and graphed as a function of dry density. The percent of maximum dry density of this series of tests ranged from 72 to 100. For example, the highest and lowest values of M_r observed for specimen DGA-4531-1-3-1 were 65,554 and 14,657 psi, respectively. Dry density and moisture content of this specimen were 132.6 and 5.9 percent, respectively. The specimen had been compacted at 93 percent of maximum dry density.

As shown in Figure 40, the resilient modulus values changed slightly as the percent of maximum dry density increased from 72 percent (103.6 lbs/ft³) to about 96 percent (136.6 lbs/ft³). However from about 96 percent of maximum dry density to 100 percent of maximum dry density (142.2 lbs/ft³) a sharp increase occurred in the values of resilient modulus. For example, from 72 percent to about 96 percent, the resilient modulus of the lower curve in Figure 40 increases only approximately 4 percent. From about 96 percent to 100 percent of maximum dry density the M_r-value increases about 37 percent. The M_r-value of the upper curve increases about 7 percent when the percent of

maximum dry density increases from 72 to about 92. From 92 to 100 percent of maximum dry density the value of M_r increases about 37 percent.

Average values for crushed (similar to DGA) limestone of residual modulus published by Boudali and Roberts (1998) are compared in Figure 40 to M_r-values obtained in this testing program. They performed resilient modulus tests on six different (approximate) gradations occurring between the gradation limits shown in Figure 41. Those tests were performed on compacted specimens. Dry densities of their specimens were not varied too much and ranched from only about 141.7 to 147.5 a variation of only about 4 percent. The dry densities averaged about 144.7 lbs/ft³. Values of resilient of their tests ranged from 24,548 (lowest value observed for the six tests) to 99,475 psi (highest value observed for the six tests). The "open" data points in Figure 40 represent the values obtained by Boudali and Roberts for the six tests using Uzan's model. Average observed values (large filled points) for the six tests ranged from 28,131 to 82,711 psi. The later values are compared to values obtained from tests performed on the "as received" DGA specimens. The resilient modulus of specimen DGAVullex 4531-1-33-1 ranged from a low value of resilient modulus of 23,506 to a high value of 86,299 psi. This specimen had been compacted to a value of about 100 percent of maximum dry density.

Resilient modulus tests were performed on DGA specimens composed of blended gradations that represented the upper and lower specifications limits, as well as a gradation representing the center of those specification limits (see Figure 4). Resilient modulus results obtained from the UKTC model are shown in Table 15 for three selected, testing stress states. Theses stresses represent a lower, center, and higher testing states of stress. Dry density as a function of resilient modulus values shown in Table 15 are shown and compared to the DGA test results in Figure 40.

Figure 41. Comparison of DGA gradation as received and tested from a producer in Kentucky and the approximate upper and lower gradation limits of crushed limestone reported by Boudali and Robert, (1998).

Minimum and maximum resilient values observed for different specification

gradation limits of DGA.											
	Dry Moisture Density Content		Percent of Maximu	Relative Density, Dr	Resilient Modulus (psi) (Selected Stress States)						
Curve ¹	(lbs/ft ³)	(%)	m Dry Density	(Percent)	$\sigma_3 = 3 \text{ psi}$ $\sigma_d = 3 \text{ psi}$	$\sigma_3 = 10 \text{ psi}$ $\sigma_d = 20$ psi	$\begin{array}{c} \text{(psi)}\\ \text{(psi)}\\ \text{(psi)}\\ \sigma_3 = 10 \text{ psi} & \sigma_3 = 20 \text{ psi}\\ \sigma_d = 20 & \sigma_d = 40 \text{ psi}\\ \hline \text{psi} & & & \\ \hline 48,125 & 73,817\\ \hline 35,139 & 68,128 \\ \hline \end{array}$				
Upper Specification Limit ²	118.9	2.3 ³	83.6		24,271	48,125	73,817				
Center ²	128.5	4.8	89.2		10,893	35,139	68,128				
Lower Specification Limit	117.4	1.9		103.6 ⁴	13,601	39,502	74,769				

1. Gradation curves of tested specimens are shown in Figures 4 and 6.

Table 15.

2. Maximum dry density and optimum moisture of the upper and center gradation materials were 142.5 lbs/ft³ and 6.6 percent, respectively.

3. Specimen could not be tested at 6.6 percent because excess pore pressures built-up during cyclic loading. Moisture content of specimen reduced to avoid excess pore pressure built-up.

4. Minimum and maximum dry densities were 107.4 and 113.6 lbs/ft³.

Results of resilient modulus tests performed on specimens of Crushed Stone Base are summarized in Table 16. The blended specimens represent the upper and lower specifications limits, as well as a gradation representing the center of those specification gradation limits (see Figure 6). Values of resilient modulus shown in the table were obtained from the UKTC model at three selected, testing stress states. Theses stresses represent a lower, center, and higher testing states of stress. Resilient modulus values ranged from a low value of 14,043 psi to a high value of 77,313 psi..

Table 16.Minimum and maximum resilient values observed for different specificationgradation limits of Crushed Stone Base.

	D		Percent of Maximum Dry Density	Relative Density,	Resilient Modulus (psi) (Selected Stress States)			
Curve ¹	Density	Content		Dr (Percent)	$\sigma_3 = 3 \text{ psi}$ $\sigma_d = 3 \text{ psi}$	$\sigma_3 = 10 \text{ psi}$ $\sigma_d = 20 \text{ psi}$	$\sigma_3 = 20 \text{ psi}$ $\sigma_d = 40 \text{ psi}$	
Upper Specification Limit ²	139.5	4.8	96.3		14,043	34,732	58,817	
Center ²	140.9	3.5	97.8		19,621	46,893	77,313	
Lower Specification Limit	113.7	2.6		≈100 ⁴	16,823	42,635	73,319	

1. Gradation curves of tested specimens are shown in Figure 6.

2. Maximum dry density and optimum moisture content of the upper and center gradation materials were 142.5 lbs/ft³ and 6.6 percent, respectively.

3. Specimen could not be tested at 6.6 percent because excess pore pressures built-up during cyclic loading. Moisture content reduced to avoid excess pore pressure built-up.

4. Minimum and maximum dry densities were 102.2 and 114.2 lbs/ft³

As shown in Figure 42, variation of resilient modulus values as a function of dry density was also determined for the No. 57 crushed stone. Resilient modulus results (obtained from the UKTC model) are shown in Tables 11, 12, and 13 for three selected, testing stress states. Theses stresses represent a lower, center, and higher testing states of stress. Since this material contained no fines, the specimens were compacted at different relative densities, D_r . Minimum and maximum dry densities of this material were 90.0 and 97.3 lbs/ft³, respectively. At the lowest selected stress state , resilent modulus ranged from an average value of 23,762 psi to 28,966 psi for average values of relative compaction of one and 100 percent, repectivley (lower curve in Figure 42). As the dry density increased, the M_r-value of the lower curve increased approximately 18 percent. At the larger stress state (upper curve in Figure 42), the M_r-value only increased from about one to 100 percent. The average M_r-value increased from about 61,220 to 63,248 psi, repectivley. Overall, the resilient modulus of the the "uniform-graded" (see Figure 6) No. 57 Stone did not increase significant as the dry density increased.

Attempts to establish a moisture density relation for the Crushed River Gravel were unsuccessful because the material lacked sufficient fines. The percent finer than the US Standard Sieve No. 200 was only 4 percent. The maximum and minimum dry densities of this material were established using the equipment in Figure 14 and were equal to 105.2 and 128.2 lbs/ft³, respectively. Relative densities of the specimens ranged from about 4 to 100 percent.

Variation of the resilient modulus of river gravel with increasing dry density is illustrated in Figure 43. At the lower stress state (lower curve), the average resilient modulus ranged from 13,960 psi at a relative compaction of about 4 percent to 14,047 psi at a ralative compaction of about 100 percent. The change in M_r was essentially unchanged. At the higher stress state (upper curve), the M_r -value decreased slightly about 7 percent as the dry density increased. The average resilient modulus ranged from 65,089 psi at a relative compaction near 4 percent to 60,472 psi at a relative compaction of about 100 percent. Essentially, the value of M_r did not change significantly with increasing density for this material.

The percent finer than the US Standard No. 200 Sieve of the "as received" Recycled Concrete sample was only 1.7 percent, as shown in Figure 8. Consequently, the maximum and minimum values of dry density were determined because of insufficient fines needed to establish a moisture-density relation. Maximum and minimum dry densities were 107.3 and 94.4 lbs/ft³, respectivley. Relative densities of the resilient modulus test specimens ranged from zero to values above 100 percent. Apparently, some crushing of the concrete pieces may have occurred when attempting to compact specimens to relative densities of 100 percent. In attempting to determine the maximum dry density, the shaker table was used and the specimen was not compacted with a Proctor hammer. Consequently, the compaction of specimens may have created some fine material during compaction which resulted in a dry density greater than the value obtained from the shaker table. Resilent modulus values obtained from the UKTC model using selected stress conditons are shown as a function of dry density in Figure 44. In each case, the reslient increases with increasing dry density.

As the dry density increases from about 94.4 to 117.7 lbs/ft^3 , the reslient modulus of the lower curve at selected stresses shown in the figure increase approximately 15 percent. At the stresses shown in the figure, the reslient modulus of the upper curve increases about 19 percent.

Repeatability of Resilient Modulus Testing Equipment

Synthetic Specimen of PVC

Repeatability of the resilient modulus test is dependent on the testing equipment, skills of the operator, and the composition of the testing specimen. To be viable, however, testing equipment should reproduce results that are acceptable within certain limits. To check the ability of the resilient modulus testing equipment used in this study, tests were performed on a very uniform cylindrical specimen of PVC plastic (polyvinyl chloride or vinyl) measuring 6 inches in diameter and 12 inches in height—the same dimensions used in remolding specimens of aggregate. The synthetic specimen provided quality control during testing. This specimen was routinely tested during the aggregate resilient modulus-testing program to insure that uniform results were obtained from the resilient modulus testing equipment during production testing.

Five resilient modulus tests were performed on the PVC cylinder to examine the repeatability of the test. Each time the test was completely broken down and the cylinder was removed from the chamber and reset. LVDTs were reset. Correlation regression coefficients obtained from Models 4, 5, 6, and 6 for the PVC tests were summarized in Table 10. Resilient modulus values based on those coefficients for each model are given in the top portion of Table 17. Values of R² for the five repeated tests obtained from the four models ranged from 0.953 to 0.985. Resilient modulus values were computed for three different, selected states of stress, as shown in the table. Minimum and maximum values obtained from each model at the 95 percent confidence level are also shown. At the 95 percent confidence level, the percentage differences in minimum and maximum computed values of resilient modulus ranged from 1.4 to 7.5 percent. The percentage differences of Seed's model ranged from 3.6 to 7.2 percent while Uzan's model yielded percentage values that ranged from 2.0 to 5.0. The percentage differences for the UKTC model and the NCHRP model ranged from 1.6 to 4.4 and 1.9 to 4.3, respectively. These results indicated that the test could be repeated with a good degree of confidence.

No. 57 Aggregate

As another means of examining the repeatability of the resilient modulus test, a second series of repeated resilient modulus tests were performed on aggregate specimens molded from No. 57 Stone. Specimens were remolded to nearly identical dry densities and at a relative compaction of about 8 percent. Results of this testing scenario are summarized in the bottom portion of Table 17. R^2 -values from the Seed model ranged from 0.874 to 0.951. Values of R^2 from the other three models ranged from 0.990 to 0.998. At the 95 percent confidence level, percentage differences observed between maximum and minimum values computed from the correlation regression coefficients for three selected stress conditions ranged from 11.5 to 18.1. Based on those test results, the resilient modulus test data could be repeated with reasonable confidence.

	Model											
	Seed	Uzan	UKTC	NCHRP	Seed	Uzan	UKTC	NCHR P	Seed	Uzan	UKTC	NCHRI
Specimen				1		Stre	ess State			1	1	1
opeemen		$\sigma_3 = 3 \text{ ps}; \sigma_d = 3 \text{ psi}$				$\sigma_3 = 10 \text{ psi}; \sigma_d = 20 \text{ psi}$			$\sigma_3 = 10 \text{ psi}; \sigma_d = 20 \text{ psi}$			
		$\sigma_{sum} = 12 \text{ psi}$				$\sigma_{sum} = 50 \text{ psi}$				$\sigma_{sum} = 1$	100 psi	
	M _r (psi)											
PVC-4531-1-41-1	28899	30101	32182	29802	105508	100681	100816	10092 2	197897	187305	193907	186467
PVC-4531-1-42-1	29233	30146	32254	29880	102138	98622	98698	99006	187533	179873	186333	179796
PVC-4531-1-43-1	29579	30649	32702	30327	103491	99302	99790	99784	190145	181151	188192	181097
PVC-4531-1-44-1	29961	30866	32677	30573	102767	99252	99995	99752	187002	179548	187447	179724
PVC-4531-1-45-1	30207	30939	32559	30685	101810	99157	99362	99623	183690	177989	185447	178363
Minimum	28899	30101	32182	29802	101810	98622	98698	99006	183690	177989	185447	178363
Maximum	30207	30939	32702	30685	105508	100681	100816	10092 2	197897	187305	193907	186467
Percentage Difference at the 95 percent confidence level	4.5	2.7	1.6	2.9	3.6	2.0	2.1	1.9	7.2	5.0	4.4	4.3
No57VULLEX-4531-1-57-1	24411	25989	26784	25668	53136	49612	49689	49633	77528	71438	73255	70672
No57VULLEX-4531-1-57-2	24939	27542	28189	27000	53138	47756	47889	47811	76732	67509	69328	66430
No57VULLEX-4531-1-57-3	27029	29100	30094	28677	58385	53839	53889	53848	84868	77047	78742	76046
No57VULLEX-4531-1-57-4	24074	26297	27196	25820	51779	46878	47070	46933	75109	66765	68428	65787
No57VULLEX-4531-1-57-5	28745	31650	32714	31046	58570	52593	52726	52607	82759	72832	74295	71580
Minimum	24074	25989	26784	25668	51779	46878	47070	46933	75109	66765	68428	65787
Maximum	28745	31650	32714	31046	58570	53839	53889	53848	84868	77047	78742	76046
Percentage Difference at the 95 percent confidence level	16.2	17.9	18.1	17.3	11.6	12.9	12.7	12.8	11.5	13.3	13.1	13.5

Table 17. Ninety-five percent confidence levels of resilient tests repeated on a PVC cylinder and No. 57 stone aggregate.

CONCLUSIONS

The following conclusions were made:

- Resilient modulus, by definition, is not a constant value but varies with the stress condition.
- Values of resilient modulus of well-graded aggregate increase as the dry density increases. Increases of resilient modulus were more noticeable and larger for well-graded aggregates than resilient modulus values of uniformly-graded aggregates. Values of resilient modulus of dense graded aggregate (DGA) generally were greater than values of the resilient modulus of the number 57 stone, crushed stone base, river gravel, and recycled concrete.
- Resilient modulus tests could not be performed on DGA specimens representing the upper gradation limit (Kentucky Transportation Cabinet Standard Specifications, 2002) and remolded to maximum dry density and optimum moisture content (AASHTO T-99). The specification allows a maximum of 13 percent of material finer than the US No. 200 sieve. The combination of a large percentage of fines and a moisture content near optimum creates high pore water pressures during cyclic loading, although the test is performed in an undrained state. By reducing the water content, the test could be performed. The build up of excess pore pressures has been observed indirectly in base materials as evidenced by the migration of fines to the surfaces of pavements.
- A number of tests were performed to define the resilient modulus of aggregates commonly used in pavement bases in Kentucky. Data that was developed will provide a good means for defining "Level 1," as well as "Level 2," resilient modulus input to the mechanistic model developed by AASHTO (American Association of State Highway and Transportation Officials).
- Based on resilient modulus repeatability tests, test results could be repeated with reasonable confidence.

RECOMMENDATIONS

- Studies are recommended to examine the following areas of research:
 - □ The effect of different gradations (or particle sizes) of base materials on the value of resilient modulus needs to be examined. The maximum, or the permissible, percentage of fines for DGA and Crushed Stone Bases should be determined which would not allow excess pore water pressures to build-up under cyclic loading of the resilient modulus test. Fines (controlled) are added to the matrix when the limestone materials are blended at the quarry.
 - □ The effect of migratory subgrade fines (clay-size particles) on the resilient modulus of base materials needs to be examined. During dissipation of excess pore pressures, fine clayey-size particles from the subgrade are pushed into the lower portion of the base aggregate. Strengths (and resilient modulus) of the base materials decrease when excess pore pressures occur in the soil subgrade. Secondly, as fines (uncontrolled)

enter the bottom of base aggregates from an untreated (fine-grained) subgrade, excess pore pressures may build up in the base aggregates due to the increase of fines.

- The effectiveness of geofabrics (used as grade separators) to prevent migration of fines into the bottom of the aggregate base needs to be studied. Although the migration of fines may be prevented, the geofabric may clog and cease functioning with increasing time. If the material allows fine particles to pass into the base, than the resilient modulus of the base is altered. In either case, the resilient modulus of the base or/and subgrade will be altered.
- □ Extensive geotechnical research needs to be performed to examine "filter requirements" between base aggregates and clayey subgrades. Findings of this type of research could help redefine and improve the engineering functions of gradations of typical base aggregates commonly used in Kentucky. To prevent migration of subgrade fines into base aggregates, filter criteria must be met between a given type of soil subgrade and a selected type of base aggregate. Moreover, when filter fabric is used as a grade separator to prevent the migration of subgrade fines into the base aggregates, filter criteria must be satisfied between the subgrade soils and the fabric. This is a novel approach to improving the performance and function of base aggregates.
- Resilient modulus tests should be performed on laboratory and field specimens (Hopkins et al, 1995, 2002) of chemically stabilized subgrades. Values of resilient modulus will be needed as input in the new AASHTO mechanistic model. This study did not address this important determination since it was not within the scope of the study. In the pavement system, a chemically treated subgrade may function as a base in some cases or as a subbase in others. Chemical stabilization of subgrades in Kentucky is increasingly being used to improve the poor engineering properties of soils. Sufficient testing should be performed to provide "Level 1," as well as "Level 2," resilient modulus data input to the mechanistic model developed by AASHTO. Chemical admixtures to be examined should include hydrated lime, Portland cement, and lime kiln dust. Typical soils found in Kentucky should be included in the study.

With completion of this study on the resilient modulus of aggregates, the Kentucky Transportation Cabinet is in a good position to implement the use of mechanistic pavement design models. A second study, sponsored by the Kentucky Transportation Cabinet, focused on defining the resilient modulus of compacted soils commonly located in Kentucky. Both soaked and unsoaked specimens were tested. Consequently, data for defining the resilient modulus of aggregates and soils are available for use in the mechanistic pavement design model developed by AASHTO. However, a third study is needed to define the resilient modulus of chemically treated subgrades.

- American Association of State Highway and Transportation Officials (1993). "AASHTO Guide for Design of Pavement Structures," Washington, D.C., USA.
- American Association of State Highway and Transportation Officials (2000). *Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II-Tests*, II-1015-1029, 20th edition, Washington, D.C., USA.
- American Association of State Highway and Transportation Officials (2004). *Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II-Tests*, II-1015-1029, 24th edition, Washington, D.C., USA.
- ARA, Inc., ERES Consultant Division, *Guide for Mechanistic-Empirical Design of new and Rehabilitated Pavement Structures, Final Report, Part 2, Design Inputs,* Champaign, Illinois (Prepared for the National Cooperative highway research Program, Transportation Research Board, National research Council, March, 2004).
- Boudali, M. and Robert, C. (1998). Laboratory Determination of Base Material Resilient Moduli, Ministere des Transports du Quebec (Canada), Proceedings of the Fifth international Conference on the Bearing Capacity of Roads and Airfields (BCRA'98), Volume III, Trondheim, Norway, 1998.
- Claros G., Hudson W. R., and Stokoe II K. H. (1990). "Modifications of Resilient Modulus Testing Procedure for Equipment Calibration". Transportation Research Record TRB No. 1278, Transportation Research Board National Research Council, Washington, D.C.
- Dunlap, W.S. (1963), "A Report on a Mathematical Model Describing the Deformation Characteristics of Granular Materials," Technical Report 1, Project 2-8-62-27, TTI, Texas A & M University.
- Kentucky Transportation Cabinet, Department of Highways. (2004). "Standard Specifications for Road and Bridge Construction," Frankfort, Kentucky.
- Halin, J. P., (Fall 2001). National Highway Cooperative Research Program, Project 1-28A.
- Highway Research Board (1962). "The AASHO Road Test," Special reports 61A, 61B, 61C, 61D, 61E, 61F, and 61G, National Academy of sciences—National Research Council, Washington 25, D. C.
- Hopkins, T.C. and Beckham, T. L. (September 1993). "Proposed Procedure for Compacting Laboratory Specimens for Physical Properties Testing," Proceedings, Tenth Annual International Pittsburgh Coal Conference, Pittsburgh, Pennsylvania.
- Hopkins, T. C., Beckham, T. L., Sun, L., and Ni, B. (2001—Revised and updated 2004). Resilient Modulus of Kentucky Soils, Research Report KTC-01-07/SPR-163-95-1F, University of Kentucky Transportation Center, College of Engineering, Lexington, Kentucky.
- Hopkins, T. C., Beckham, T. L., and Hunsucker, (June 1995). "Modification of Highway Soil Subgrades," Research Report KTC-94-11, University of Kentucky Transportation Center, College of Engineering, Lexington, Kentucky.
- Hopkins, T. C., Beckham, T. L., Sun, L., Ni, B., and Butcher, B. (June 2002). "Long-Term Benefits of Stabilizing Soil Subgrades," Research Report KTC-02-19/SPR-196-99-1F, University of Kentucky Transportation Center, College of Engineering, Lexington, Kentucky.
- Hopkins, T. C., Beckham, T. L., Sun, L., and Pfalzer, B. (2005). "Kentucky Geotechnical Database," Research Report KTC-05-03/SPR227-01-1F, University of Kentucky Transportation Center, College of Engineering, Lexington, Kentucky.
- Houston W. N., Houston S. L., and Anderson T. W. (1993). "Stress State Considerations for Resilient Modulus Testing of Pavement Subgrade." Transportation Research Record TRB No. 1406, Transportation Research Board National Research Council, Washington, D.C.
Lambe, T. W.; and Whitman, R.V.; (1969), "Soil Mechanics," John Wiley and Sons, Inc., New York.

- May, R.W. and Witczak, M. W.; (1981). "Effective Granular Modulus to Model Pavement Response," Transportation Research Record 810, Transportation Research Board, National Research Council, Washington, D.C.
- Mohammad L. N., Puppala A. J., and Alavilli P. (1995). "Resilient Properties of Laboratory Compacted Subgrade Soils." Transportation Research Record TRB No. 1504, Transportation Research Board National Research Council, Washington, D.C.
- Moossazadeh, J. M., and Witczak, W. (1981). "Prediction of Subgrade Moduli for Soil That Exhibits Nonlinear Behavior," Transportation Research Record. Transportation Research Board, National Research Council, Washington, D.C.
- Ni, B., Hopkins, T. C., and Sun, L. (2002). "Modeling the Resilient Modulus of Soils," Proceedings, Sixth International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRA'02), Lisbon, Portugal.
- Strategic Highway Research Program. (1989). "Resilient Modulus of Unbound Granular Base/Subbase Materials and Subgrade Soils," SHRP Protocol P-46, UGO7, SSO7.
- Seed, H.B., Mitry, F. G., Monosmith, C. L, and Chan, C. K. 1967. "Prediction of Pavement Deflection from Laboratory Repeated Load tests," NCHRP Report 35.
- The AASHO Road Test (May 1962), Proceedings, Special Report 73, Publication No. 1012, National Academy of Sciences National Research Council, Washington, D.C.
- Uzan, J. 1985. "Characterization of Granular Materials," Transportation Research Record 1022, Transportation Research Board, National Research Council, Washington, D.C.
- Transportation Research Board, NCHRP Research Team, Hallin, J. P., ERES Consultants. (Fall 2001). Milestones 2002, *Moving Towards the 2002 Pavement Design Guide*, NCHRP Project 1-37*A*, Washington DC.

Appendix A

Determination of Coefficients for Resilient Modulus Models Using Simple/Multiple Regression Analysis This appendix presents the general method of simple/multiple linear regression and how to use this method to determine the coefficients of models for resilient modulus of soils or aggregate materials.

General Linear Regression

Assume we have a linear function as follows:

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_m x_m$$
(1)

and we have *n* set of data:

The purpose of linear regression analysis is to obtain the coefficients a_0 , a_1 , a_2 , ..., a_m , which make the overall differences between the tested y_i values and predicted y values to minimum. That is, to make

$$Q = \sum_{j=1}^{n} [y_j - (a_0 + a_1 x_{1j} + a_2 x_{2j} + \dots + a_m x_{mj})]^2$$
(3)

to minimum. By calculus, there has to be

$$\frac{\partial Q}{\partial a_i} \equiv 0 \qquad \qquad i = 0, \ 1, \ 2, \ \dots \ m$$
(4)

That is,

$$\frac{\partial Q}{\partial a_0} = \sum_{j=1}^n 2 * [y_j - (a_0 + a_1 x_{1j} + a_2 x_{2j} + \dots + a_m x_{mj})] * (-1) \equiv 0$$

$$\frac{\partial Q}{\partial a_1} = \sum_{j=1}^n 2 * [y_j - (a_0 + a_1 x_{1j} + a_2 x_{2j} + \dots + a_m x_{mj})] * (-x_{1j}) \equiv 0$$

$$\dots$$

$$\frac{\partial Q}{\partial a_i} = \sum_{j=1}^n 2 * [y_j - (a_0 + a_1 x_{1j} + a_2 x_{2j} + \dots + a_m x_{mj})] * (-x_{ij}) \equiv 0$$

$$\dots$$

$$\frac{\partial Q}{\partial a_m} = \sum_{j=1}^n 2 * [y_j - (a_0 + a_1 x_{1j} + a_2 x_{2j} + \dots + a_m x_{mj})] * (-x_{mj}) \equiv 0$$

Simplify (4a) and express those in tensor format; the coefficients are determined by solving the following equations:

$$C'C\begin{pmatrix}a_{0}\\a_{1}\\\vdots\\\vdots\\a_{m}\end{pmatrix} = C\begin{pmatrix}y_{1}\\y_{2}\\\vdots\\\vdots\\\vdots\\y_{n}\end{pmatrix}$$
(4b)

where

$$C = \begin{pmatrix} 1 & x_{11} & x_{21} & \dots & x_{m1} \\ 1 & x_{12} & x_{22} & \dots & x_{m2} \\ \dots & \dots & \dots & \dots \\ 1 & x_{1n} & x_{2n} & \dots & x_{mn} \end{pmatrix}$$
(5)

$$C' =$$
 Transpose of C

The confidence in the coefficients obtained from the above linear regression is determined by R^2 defined as follows:

$$R^2 = 1 - \frac{Q}{S_{yy}} \tag{6}$$

where Q is already defined in equation (3),

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
(7)

and

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i , \qquad (8)$$

the mean of tested *y* values.

Determine the Coefficients for Resilient Modulus of Aggregate Materials

Dunlap (Model 1):

$$M_r = k_1 \left(\frac{\sigma_3}{p_a}\right)^{k_2} \tag{9}$$

Moossazadeh and Witczak (Model 2):

$$M_r = k_1 \left(\frac{\sigma_d}{p_a}\right)^{k_2} \tag{10}$$

Seed et al. (Model 3):

$$M_r = k_1 \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2} \tag{11}$$

Uzan (Model 4):

$$M_r = k_l \left(\frac{\sigma_{sum}}{p_a}\right)^{k_2} \left(\frac{\sigma_d}{p_a}\right)^{k_3} \tag{12}$$

UKTC (Model 5):

$$M_{r} = k_{I} \left(\frac{\sigma_{3}}{p_{a}} + I\right)^{k_{2}} \left(\frac{\sigma_{d}}{p_{a}} + I\right)^{k_{3}}$$
(13)

NCHRP (Model 6):

$$M_{r} = k \left(\frac{\sigma_{sum}}{p_{a}}\right)^{k_{2}} \left(\frac{\tau_{oct}}{p_{a}} + 1\right)^{k_{3}}.$$
(14)

In the above models,

 M_r = Resilient modulus, p_a = Reference pressure (used to normalize M_r units), σ_3 = Minimum effective principal stress, σ_d = Deviator stress, σ_{sum} = Sum of three principal stresses, σ_{sum} = sum of three principal stresses, and τ_{oct} = Octahedral shear stress acting on the material, k_1 , k_2 and k_3 are coefficients need to be determined.

There are one variable and two coefficients in first three Models, and two variables and three coefficients in other three models. All models are not linear equations and have to be transferred into a linear equation in order to apply a linear regression analysis.

All six models can be linearized as following:

$$Log(M_{r}) = Log(k_{1}p_{a}) + k_{2}Log(X_{1}) + k_{3}Log(X_{2})$$
(15)

where

 X_l stands for σ_3/p_a and σ_d/p_a in Models 1 and 2 respectively; for σ_{sum}/p_a in Models 3, 4, and 6 respectively; and for $(\sigma_3/p_a + 1)$ in model 5. X_2 stands for σ_d/p_a , $(\sigma_d/p_a + 1)$, and $(\tau_{oct}/p_a + 1)$ in models 4, 5, and 6 respectively.

	M _r	(psi)
Let	14408	3
	15757	3
$y = Log(M_r), a_0 = Log(k_1p_a), a_1 = k_2, a_2 = k_3, x_1 = Log(X_1), x_2 = Log(X_1)$	16285	3
· ,	21642	5
	22519	5
we have a simple linear equation:	23169	5
	35154	10
$y = a_0 + a_1 x_1 + a_2 x_2$	37279	10
	37680	10
Assume we have <i>n</i> set of data	44883	15
	45506	15
(y_1, x_{11}, x_{21})	46817	15
(v_2, x_{12}, x_{22})	56864	20
$\begin{pmatrix} & 2 \\ & & 12 \end{pmatrix}$	60505	20

where

(.....)

 (y_n, x_{1n}, x_{2n})

 $y_i = Log(M_{ri}), x_{1i} = Log(X_{1i}), x_{2i} = Log(X_{2i})$ for i = 1 to n. Coefficients a_0, a_1 and a_2 are solved from the following equation:

$$C'C\begin{pmatrix}a_{0}\\a_{1}\\a_{2}\end{pmatrix} = C'\begin{pmatrix}y_{1}\\y_{2}\\\vdots\\\vdots\\y_{n}\end{pmatrix}$$
(17)

where

The task turns to solving a 3 by 3 linear equation for a_0 , a_1 and a_2 . And

 $C = \begin{pmatrix} 1 & x_{11} & x_{21} & \dots & x_{m1} \\ 1 & x_{12} & x_{22} & \dots & x_{m2} \\ \dots & \dots & \dots & \dots \\ 1 & x_{1n} & x_{2n} & \dots & x_{mn} \end{pmatrix}$

$$k_1 = \frac{e^{a_0}}{p_a}, \quad k_2 = a_1, \quad k_3 = a_2.$$
⁽¹⁹⁾

The value of R^2 is still determined by Equation 6.

Table A-1. Original

 σ_3

 σ_d

(psi)

3

6

9

5

10

15

10

20

30

10

15

30

15

20

40

(18)

20

Test Data

 M_r

58820

Example of Calculating k_1 , k_2 , and k_3 from the Test Data for UKTC Model (Model 5)

Equations 13, 15–18, 6–8 are used to calculate k_1 , k_2 , and k_3 , and to evaluate R^2 . Assume $p_a = 1$ psi. Test data are shown in Table A-1.

Consider UKTC model:

$$M_{r} = k_{1} p_{a} \left(\frac{\sigma_{3}}{p_{a}} + 1\right)^{k_{2}} \left(\frac{\sigma_{d}}{p_{a}} + 1\right)^{k_{3}}$$

Note that $p_a = 1 psi$ and linearize UKTC model as:

$$Log(M_r) = Log(k_1) + k_2 Log(\sigma_3 + 1) + k_3 Log(\sigma_d + 1)$$

Let

 $y = Log(M_r), a_0 = Log(k_1), a_1 = k_2, a_2 = k_3, x_1 = Log(\sigma_3 + 1), x_2 = Log(\sigma_d + 1).$ We have a simple linear equation:

$$y = a_0 + a_1 x_1 + a_2 x_2$$

Convert original test data to linear item data, as shown in Table A-2.

From Equation 18, C and C' will be:

	[1	1.386294361	1.386294361
	1	1.386294361	1.945910149
	1	1.386294361	2.302585093
	1	1.791759469	1.791759469
	1	1.791759469	2.397895273
	1	1.791759469	2.772588722
	1	2.397895273	2.397895273
<i>C</i> =	1	2.397895273	3.044522438
	1	2.397895273	3.433987204
	1	2.772588722	2.397895273
	1	2.772588722	2.772588722
	1	2.772588722	3.433987204
	1	3.044522438	2.772588722
	1	3.044522438	3.044522438
	1	3.044522438	3.713572067

Table A-2.	Converted Data	
Log(Mr)	Log(σ₃+1)	Lg(₀ _d +1)
9.575539	1.386294361	1.386294361
9.66504	1.386294361	1.945910149
9.698	1.386294361	2.302585093
9.982391	1.791759469	1.791759469
10.02211	1.791759469	2.397895273
10.05057	1.791759469	2.772588722
10.46749	2.397895273	2.397895273
10.52619	2.397895273	3.044522438
10.53688	2.397895273	3.433987204
10.71181	2.772588722	2.397895273
10.7256	2.772588722	2.772588722
10.754	2.772588722	3.433987204
10.94842	3.044522438	2.772588722
11.01048	3.044522438	3.044522438
10.98224	3.044522438	3.713572067

C' = Transpose of C

 $C'C = \begin{bmatrix} 15 & 34.179181 & 39.608592 \\ 34.179181 & 83.515443 & 94.443871 \\ 39.608592 & 94.443871 & 110.445516 \end{bmatrix}$

Substituting to Equation 4b, then

15	34.179181	39.608592	(a_0)		(155.656770)
34.179181	83.515443	94.443871	a_1	=	359.119430
39.608592	94.443871	110.445516	(a_2)		(414.540132)

Solving this equation, we get:

(a_0)		(8.507814)	
a_1	=	0.729068	
$\langle a_2 \rangle$		0.078787)	
			:

From Equation 19, k_1 , k_2 , and k_3 will be:

$$\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 4953.323026 \\ 0.729068 \\ 0.078787 \end{pmatrix}$$

$$Q = \sum_{j=1}^{15} [y_j - (a_0 + a_1 x_{1j} + a_2 x_{2j})]^2 = 0.011645256$$

$$S_{yy} = \sum_{i=1}^{15} (y_i - \overline{y})^2 = 3.524374018$$

$$R^2 = 1 - \frac{Q}{S_{yy}} = 0.996695794$$

$$M_r = 4953.323026(\sigma_3 + 1)^{0.729068}(\sigma_d + 1)^{0.078787}$$

That is, the function can be used to predict resilient modulus, M_r , from test data.

Appendix B

Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens of Dense Graded Aggregates As Received From the Producer

Appendix B. Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens of Dense Graded Aggregates As Received From the Producer

Table B-1	. Dens	e Gra	ded	Aggregat	te (D	GA-453	1-1-3-1)	
Site Rownum	Hole Id	San Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum
4531	1	3	1	16477	1	3	3	12.046
			2	14968			6	14.923
			3	14906			9	17.973
			4	19969		5	5	20.27
			5	20951			10	25.064
			6	21607			15	29.941
			- 7	35280		10	10	39.913
			8	37524			20	50.335
			9	38354			30	60.042
			10	46887		15	10	54.992
			11	48620			15	59.874
			12	52937			30	75.034
			13	62378		20	15	74.86
			14	64680			20	80.166
			15	67226			40	99.732

Table D-2. Delise Graucu Aggregate (DGA-4551-1-4-1)										
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum		
4531	1	4	1	14408	1	3	3	12.015		
			2	15757			6	14.867		
			3	16285			9	17.87		
			4	21642		5	5	19.975		
			5	22519			10	25.205		
			6	23169			15	29.936		
			7	35154		10	10	40.165		
			8	37279			20	50.155		
			9	37680			30	59.955		
			10	44883		15	10	55.25		
			11	45506			15	59.952		
			12	46817			30	75.193		
			13	56864		20	15	75.358		
			14	60505			20	80.263		
			15	58820			40	99.67		

Site	Hole	Sai	nple		Test		Sigma	Sigma
Rownum	ld	ld	No	Mr	No	Sigma3	dn	Sum
4531	1	31	1	13304	1	3	2.7	11.732
			2	14310			5.4	14.672
			3	15779			8.1	16.96
			4	20292		5	4.5	19.563
			5	22960			9	24.157
			6	24954			13.5	28.567
			7	40410		10	9	39.237
			8	42392			18	48.192
			9	41360			27	57.638
			10	51572		15	9	53.968
			11	50894			13.5	58.669
			12	53569			27	72.545
			13	64410		20	13.5	74.186
			14	66561			18	78.325
			15	67486			36	96.444

Table B-4. Dense Graded Aggregate	e (DGA-4531-1-32-1)
-----------------------------------	---------------------

Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No Sigma	Sigma 3 dn	Sigma Sum
4531	1	32	1	13688	1 3	2.7	11.836
			2	15266		5.4	14.509
			3	15414		8.1	17.216
			4	18982	5	4.5	19.606
			5	21399		9	24.085
			6	21926		13.5	28.635
			7	32793	10	9	39.175
			8	35066		18	48.824
			9	32336		27	57.877
			10	41147	15	9	54.125
			11	41689		13.5	59.306
			12	45978		27	72.628
			13	53610	20	13.5	74.046
			14	56568		18	78.629
			15	58373		36	96.103

Appendix B. Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens of Dense Graded Aggregates As Received From the Producer

Table B-5	5. Dens	e Gra	aded	Aggregat	e (D	GA-453	1-1-33-1)
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum
4531	1	33	1	22977	1	3	2.7	12.021
			2	24545			5.4	14.409
			3	26114			8.1	17.075
			4	30665		5	4.5	19.707
			5	33827			9	24.147
			6	36518			13.5	28.793
			- 7	50106		10	9	39.351
			8	53815			18	48.765
			9	53831			27	57.937
			10	62727		15	9	54.301
			11	62788			13.5	59.094
			12	68072			27	72.604
			13	78138		20	13.5	73.686
			14	78740			18	78.674
			15	85093			36	96.412

Table B-6. Dense Graded Aggregate (DGA-4531-1-34-1)

Site	Hole	Sar	nple	Mr	Test	Siam 2	Sigma	Sigma Sum
Rownum	Ia	Ia	по	1411	NO	Sigmas	un	Juin
4531	1	34	1	19667	1	3	2.7	11.935
			2	20706			5.4	14.474
			3	22425			8.1	17.22
			4	28042		5	4.5	19.646
			5	29615			9	24.061
			6	28632			13.5	28.852
			7	43023		10	9	39.123
			8	39350			18	48.389
			9	38894			27	57.146
			10	55296		15	9	54.09
			11	50573			13.5	58.738
			12	51000			27	72.187
			13	63391		20	13.5	73.98
			14	63169			18	78.564
			15	63231			36	95.642

Appendix C

Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens Representing the Upper, Center, and Lower Specification Limit Gradations of Dense Graded Aggregate Appendix C: Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens Representing the Upper, Center, and Lower Specification Limit Gradations of Dense Graded Aggregate

Table C- Gradation	1. D	ense	Grad	led Agg	grega	ate (DG	A-4531	-1-60-1: Upper
Site Rownum	Hole Id	Sai Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum
4531	1	60	1	21735	1	3	2.7	11.86
			2	23729			5.4	14.626
			3	25331			8.1	17.234
			4	33895		5	4.5	19.51
			5	33093			9	24.332
			6	34951			13.5	28.726
			7	50926		10	9	39.08
			8	49129			18	48.304
			9	44299			27	57.473
			10	57330		15	9	54.265
			11	58904			13.5	58.885
			12	60952			27	72.553
			13	73598		20	13.5	73.606
			14	74114			18	78.376
			15	71716			36	95.988

Table C-2.	Dense	Graded	Aggregate	(DGA-4531-1-61-1:	Center
Gradation)					

Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No Sigma	Sigma 3 dn	Sigma Sum
4531	1	61	1	8875	1 3	2.7	11.71
			2	11017		5.4	14.525
			3	14363		8.1	17.284
			4	15749	5	4.5	19.667
			5	19790		9	24.043
			6	23761		13.5	28.718
			7	33296	10	9	39.139
			8	35628		18	48.612
			9	34094		27	57.244
			10	43657	15	9	54.161
			11	43625		13.5	58.722
			12	46029		27	72.153
			13	55771	20	13.5	73.901
			14	57198		18	78.506
			15	59906		36	95.884

Appendix C: Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens Representing the Upper, Center, and Lower Specification Limit Gradations of Dense Graded Aggregate

,	Table C- Gradation	3. D 1)	ense	Grad	led Agg	grega	ate (DG	A-4531	-1-62-1: Lower
	Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum
	4531	1	62	1	12795	1	3	2.7	11.92
				2	12605			5.4	14.387
				3	13978			8.1	17.084
				4	20197		5	4.5	19.557
				5	22200			9	24.121
				6	25833			13.5	29.098
				7	41346		10	9	39.11
				8	43071			18	48.295
				9	42803			27	56.999
				10	52207		15	9	54.365
				11	52940			13.5	58.418
				12	53371			27	72.429
				13	64931		20	13.5	73.735
				14	66976			18	78.193
				15	63643			36	95.621
	-								

Appendix D

Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens Representing the Upper, Center, and Lower Specification Limit Gradations of Crushed Stone Base Aggregates Appendix D. Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens Representing the Upper, Center, and Lower Specification Limit Gradations of Crushed Stone Base Aggregates

Table D-1. Crushed Stone Base—Upper Gradation Curve

Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum
4531	1	63	1	13383	1	3	2.7	11.683
			2	14603			5.4	14.677
			3	15963			8.1	17.434
			4	19873		5	4.5	19.632
			5	20935			9	24.416
			6	23140			13.5	28.99
			7	33667		10	9	39.301
			8	34524			18	48.511
			9	33021			27	57.648
			10	37673		15	9	54.32
			11	41981			13.5	58.684
			12	45656			27	72.268
			13	51901		20	13.5	73.974
			14	55039			18	78.608
			15	59589			36	96.109

Table D-2. Crushed Stone Base—Center Gradation Curve										
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum		
4531	1	64	1	19491	1	3	2.7	11.531		
			2	20161			5.4	14.391		
			3	23072			8.1	17.178		
			4	25337		5	4.5	19.615		
			5	28464			9	24.237		
			6	31220			13.5	28.56		
			7	44654		10	9	39.037		
			8	45827			18	48.163		
			9	49029			27	57.427		
			10	54591		15	9	54.077		
			11	54831			13.5	58.74		
			12	60672			27	72.139		
			13	66448		20	13.5	73.934		
			14	68941			18	78.118		
			15	75366			36	95.891		

Appendix D. Values of Testing Stresses and Resilient Modulus Recorded During Testing of Compacted Specimens Representing the Upper, Center, and Lower Specification Limit Gradations of Crushed Stone Base Aggregates

Table D-3	Cable D-3. Crushed Stone Base—Lower Gradation Curve											
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum				
4531	1	65	1	15908	1	3	2.7	11.776				
			2	16578			5.4	14.4				
			3	18642			8.1	17.535				
			4	23095		5	4.5	19.532				
			5	25971			9	24.216				
			6	28787			13.5	28.568				
			7	45192		10	9	39.171				
			8	43150			18	48.167				
			9	43541			27	57.308				
			10	51108		15	9	54.107				
			11	49955			13.5	58.728				
			12	56293			27	72.244				
			13	63324		20	13.5	73.847				
			14	64066			18	78.495				
			15	69733			36	96.029				

Appendix E

Values of Testing Stresses and Resilient Modulus Recorded During Testing of Specimens of Number 57s Crushed Limestone As Received From the Producer and Compacted At Different Relative Densities

Table E-1	Гаble E-1. Number 57s (NoVullex-4531-1-58-1)										
Site Rownum	Hole Id	Sai Id	nple No	Mr	Test No Sigma3	Sigma dn	Sigma Sum				
4531	1	58	1	21447	1 3	2.7	11.803				
			2	22440		5.4	14.667				
			3	24795		8.1	17.195				
			4	30097	5	4.5	19.742				
			5	31419		9	24.16				
			6	33149		13.5	28.66				
			7	47134	10	9	39.255				
			8	44008		18	48.329				
			9	42674		27	57.368				
			10	57205	15	9	54.363				
			11	53932		13.5	59.022				
			12	51928		27	72.651				
			13	63729	20	13.5	73.713				
			14	58304		18	78.448				
			15	63524		36	95.906				

Table E-2. Number 57s (NoVullex-4531-1-58-2)

Site	Hole	Sar	nple		Test		Sigma	Sigma
Rownum	ld	ld	No	Mr	No	Sigma3	dn	Sum
4531	1	58	1	38186	2	3	2.7	11.885
			2	31092			5.4	14.564
			3	30141			8.1	17.294
			4	48855		5	4.5	19.66
			5	39479			9	24.197
			6	37134			13.5	28.787
			7	63628		10	9	39.267
			8	51468			18	48.044
			9	43085			27	57.511
			10	73085		15	9	54.14
			11	64650			13.5	58.786
			12	51665			27	72.525
			13	73439		20	13.5	74.005
			14	69759			18	78.212
			15	65356			36	96.287

Table E-3	Sable E-3. Number 57s (NoVullex-4531-1-58-3)											
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum				
4531	1	58	1	21023	3	3	2.7	11.862				
			2	20391			5.4	14.5				
			3	20573			8.1	17.275				
			4	29734		5	4.5	19.652				
			5	26900			9	24.266				
			6	27840			13.5	28.698				
			7	42705		10	9	39.131				
			8	38672			18	47.972				
			9	39121			27	57.848				
			10	55112		15	9	54.189				
			11	51119			13.5	58.909				
			12	49697			27	72.291				
			13	59712		20	13.5	73.661				
			14	58684			18	78.328				
			15	59177			36	96.1				

Table E-4. Number 57s (NoVullex-4531-1-58-4)

Site	Hole	Sample			Test	Sigma	Sigma
Rownum	ld	ld	No	Mr	No Sigma3	dn	Sum
4531	1	58	1	23984	43	2.7	11.787
			2	23096		5.4	14.598
			3	24105		8.1	17.293
			4	32834	5	4.5	19.656
			5	31002		9	24.179
			6	31565		13.5	28.57
			7	46082	10	9	39.012
			8	43086		18	48.341
			9	44121		27	57.592
			10	58183	15	9	54.014
			11	55244		13.5	58.64
			12	54416		27	72.162
			13	63174	20	13.5	73.842
			14	63638		18	77.923
			15	64703		36	96.181

Table E-5	Table E-5. Number 57s (NoVullex-4531-1-58-5)											
Site Rownum	Hole Id	San Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum				
4531	1	58	1	24391	5	3	2.7	12.156				
			2	23562			5.4	14.536				
			3	24496			8.1	17.126				
			4	34476		5	4.5	19.544				
			5	31631			9	23.931				
			6	31510			13.5	28.68				
			7	46383		10	9	39.152				
			8	43203			18	48.377				
			9	42538			27	57.389				
			10	60956		15	9	54.178				
			11	56518			13.5	58.61				
			12	52912			27	72.539				
			13	65045		20	13.5	73.781				
			14	61553			18	78.484				
			15	58141			36	96.03				

Table E-6. Number 57s (NoVullex-4531-1-58-6)

Site	Hole	Sample			Test	Sigma	Sigma
Rownum	ld	ld	No	Mr	No Sigm	a3 dn	Sum
4531	1	58	1	24288	63	2.7	11.941
			2	23300		5.4	14.531
			3	24678		8.1	17.138
			4	30804	5	4.5	19.678
			5	30721		9	23.964
			6	31193		13.5	29.349
			7	44902	10	9	39.185
			8	45175		18	48.171
			9	45377		27	57.44
			10	55964	15	9	54.288
			11	54334		13.5	58.802
			12	55469		27	72.348
			13	63579	20	13.5	73.51
			14	62666		18	78.079
			15	66260		36	96.158

Appendix F

Values of Testing Stresses and Resilient Modulus Recorded For Five Repeat Tests of Number 57s Crushed Limestone Compacted To the Same Relative Density

Table F-1. Number 57s (NoVullex-4531-1-57-1)											
Site Rownum	Hole Id	San Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum			
4531	1	57	1	26162	1	3	2.7	11.924			
			2	26912			5.4	14.589			
			3	27487			8.1	17.133			
			4	34865		5	4.5	19.578			
			5	35472			9	23.961			
			6	33523			13.5	28.943			
			7	48950		10	9	39.151			
			8	49677			18	48.319			
			9	49683			27	57.634			
			10	61147		15	9	54.111			
			11	62272			13.5	58.148			
			12	62504			27	72.641			
			13	70240		20	13.5	73.695			
			14	72353			18	78.409			
			15	73371			36	96.141			

Table 1-2. Rumber 578 (100 unex-4551-1-57-2
Table 1-2. Trumber 575 (100 unex-4551-1-57-2

Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum
4531	1	57	1	28410	2	3	2.7	11.636
			2	25374			5.4	14.515
			3	26612			8.1	17.188
			4	37352		5	4.5	19.694
			5	34824			9	24.032
			6	33834			13.5	28.7
			7	49644		10	9	39.164
			8	46936			18	48.276
			9	47565			27	57.697
			10	67491		15	9	54.129
			11	64565			13.5	58.508
			12	60184			27	72.322
			13	73205		20	13.5	73.682
			14	71383			18	78.319
			15	70292			36	96.048

Table F-3. Number 57s (NoVullex-4531-1-57-3)											
Site Rownum	Hole Id	Sai Id	mple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum			
4531	1	57	1	29446	3	3	2.7	11.943			
			2	27947			5.4	14.568			
			3	29939			8.1	17.104			
			4	39833		5	4.5	19.712			
			5	37851			9	24.148			
			6	38199			13.5	28.954			
			7	57377		10	9	39.214			
			8	55067			18	48.06			
			9	54513			27	57.334			
			10	70343		15	9	54.236			
			11	67859			13.5	58.641			
			12	66938			27	72.14			
			13	78290		20	13.5	73.763			
			14	76415			18	78.518			
			15	77669			36	96.018			

Site Rownum	Hole Id	Sai Id	mple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum
4531	1	57	1	26885	4	3	2.7	11.997
			2	26405			5.4	14.531
			3	24960			8.1	17.33
			4	37181		5	4.5	19.669
			5	33453			9	24.219
			6	32214			13.5	28.924
			7	49096		10	9	39.197
			8	46837			18	48.179
			9	47469			27	57.867
			10	63297		15	9	54.11
			11	58681			13.5	58.918
			12	61750			27	72.386
			13	71596		20	13.5	73.613
			14	70929			18	78.144
			15	68179			36	96.262

Fable F-5. Number 57s (NoVullex-4531-1-57-5)											
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No Sigma3	Sigma dn	Sigma Sum				
4531	1	57	1	32211	53	2.7	11.936				
			2	29198		5.4	14.599				
			3	30304		8.1	17.211				
			4	42546	5	4.5	19.835				
			5	38490		9	24.281				
			6	38518		13.5	28.716				
			7	62396	10	9	39.222				
			8	53183		18	48.288				
			9	51559		27	57.572				
			10	74391	15	9	54.049				
			11	67273		13.5	58.964				
			12	64112		27	72.449				
			13	78373	20	13.5	73.671				
			14	76722		18	78.177				
			15	76278		36	95.988				

Appendix G

Values of Testing Stresses and Resilient Modulus Recorded During Testing of River Gravel Specimens Compacted to Different Relative Compaction Values

Table G-1. River Gravel, RGRAV-4531-1-21-1											
Site Rownum	Hole Id	Sar Id	nple No	Мг	Test No	Sigma3	Sigma dn	Sigma Sum			
4531	1	21	1	14863	1	3	2.7	11.953			
			2	15882			5.4	14.492			
			3	16025			8.1	17.233			
			4	20142		5	4.5	19.68			
			5	21866			9	24.377			
			6	22847			13.5	28.581			
			7	34949		10	9	39.299			
			8	37154			18	48.393			
			9	37473			27	57.623			
			10	43142		15	9	54.121			
			11	44345			13.5	58.727			
			12	49530			27	72.686			
			13	56059		20	13.5	74.042			
			14	58526			18	78.608			
			15	63377			36	96.429			

Table G-2. River Gravel, RGRAV-4531-1-22-1

Site	Hole	Sar	nple		Test		Sigma	Sigma
Rownum	ld	ld	No	Mr	No	Sigma3	dn	Sum
4531	1	22	1	11930	1	3	2.7	12.447
			2	13543			5.4	14.624
			3	15235			8.1	17.223
			4	17497		5	4.5	19.746
			5	20430			9	24.183
			6	22551			13.5	28.653
			7	33130		10	9	39.307
			8	36730			18	48.696
			9	37123			27	57.788
			10	42473		15	9	54.108
			11	43920			13.5	58.64
			12	46246			27	72.31
			13	48360		20	13.5	74.173
			14	57661			18	78.85
			15	60152			36	96.713

Table G-3. River Gravel, RGRAV-4531-1-23-1											
Site Rownum	Hole Id	San Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum			
4531	1	23	1	14137	1	3	2.7	11.897			
			2	14429			5.4	14.47			
			3	15957			8.1	17.399			
			4	20251		5	4.5	19.644			
			5	21214			9	24.017			
			6	23690			13.5	28.84			
			7	36816		10	9	39.507			
			8	38762			18	48.248			
			9	40181			27	57.754			
			10	48358		15	9	53.952			
			11	49036			13.5	58.757			
			12	51634			27	72.664			
			13	61293		20	13.5	74.072			
			14	61010			18	78.507			
			15	65389			36	96.167			

Table G-4. River Gravel, RGRAV-4531-1-24-1

Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No Sig	ma3	Sigma dn	Sigma Sum
4531	1	24	1	13359	1	3	2.7	11.96
			2	14043			5.4	14.631
			3	14197			8.1	17.142
			4	18022		5	4.5	19.737
			5	20541			9	24.336
			6	20770			13.5	28.789
			7	33470	,	10	9	39.181
			8	35642			18	48.468
			9	32655			27	57.863
			10	42027	,	15	9	54.069
			11	42635			13.5	59.125
			12	44979			27	72.197
			13	58499	2	20	13.5	74.042
			14	61976			18	78.629
			15	57113			36	101.468

Table G-5. River Gravel, RGRAV-4531-1-25-1											
Site Rownum	Hole Id	San Id	nple No	Мг	Test No	Sigma3	Sigma dn	Sigma Sum			
4531	1	25	1	12346	1	3	2.7	11.954			
			2	13440			5.4	14.62			
			3	13440			8.1	17.154			
			4	17102		5	4.5	19.739			
			5	19223			9	24.078			
			6	20576			13.5	28.878			
			7	30861		10	9	39.375			
			8	35021			18	48.48			
			9	31056			27	57.486			
			10	39015		15	9	54.307			
			11	36660			13.5	58.923			
			12	43754			27	72.677			
			13	50343		20	13.5	74.258			
			14	53929			18	78.084			
			15	55886			36	96.113			

Table G-6. River Gravel, RGRAV-4531-1-26-1

Site	Hole	Sample		Test			Sigma	Sigma
Rownum	ld	ld	No	Mr	No	Sigma3	dn	Sum
4531	1	26	1	15550	1	3	2.7	12.035
			2	16773			5.4	14.536
			3	18363			8.1	17.182
			4	21610		5	4.5	19.592
			5	23808			9	24.006
			6	25995			13.5	28.536
			7	36170		10	9	39.318
			8	39032			18	48.816
			9	39057			27	57.319
			10	45321		15	9	54.327
			11	47035			13.5	58.691
			12	50626			27	72.246
			13	57529		20	13.5	74.06
			14	60645			18	78.488
			15	63965			36	96.02

Appendix H

Values of Testing Stresses and Resilient Modulus Recorded During Testing of Crushed Recycled Concrete Specimens Compacted to Different Relative Compaction Values

Table H-1. Recycled Concrete, RECON-4531-1-11-1									
Site Rownum	Hole Id	Sample Id No		Test Mr No Sigma3			Sigma dn	Sigma Sum	
4531	1	11	1	17538	1	3	2.7	12.172	
			2	18534			5.4	14.654	
			3	19940			8.1	17.31	
			4	27602		5	4.5	19.741	
			5	27172			9	24.065	
			6	28486			13.5	28.835	
			7	47002		10	9	39.019	
			8	45323			18	47.911	
			9	42424			27	57.5	
			10	64329		15	9	54.013	
			11	59291			13.5	58.483	
			12	55181			27	72.396	
			13	76319		20	13.5	73.8	
			14	74839			18	78.275	
			15	68369			36	96.013	

Table H-2. Recycled Concrete, RECON-4531-1-12-1

Site	Hole	Sample			Test	Sigma	Sigma			
Rownum	ld	ld	No	Mr	No Sigma	3 dn	Sum			
4531	1	12	1	17393	13	2.7	11.741			
			2	17425		5.4	14.694			
			3	18225		8.1	17.201			
			4	23376	5	4.5	19.697			
			5	23744		9	24.14			
			6	24702		13.5	28.712			
			7	36007	10	9	39.029			
			8	37497		18	48.228			
			9	35253		27	57.44			
			10	45067	15	9	54.094			
			11	45295		13.5	58.85			
			12	48018		27	72.573			
			13	57907	20	13.5	73.658			
			14	58915		18	78.544			
			15	59546		36	96.138			
Table H-3. Recycled Concrete, RECON-4531-1-13-1										
---	------------	-----------	------------	-------	------------	--------	-------------	--------------	--	--
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum		
4531	1	13	1	13221	1	3	2.7	12.066		
			2	15056			5.4	14.6		
			3	15421			8.1	17.256		
			4	20559		5	4.5	19.63		
			5	21104			9	24.138		
			6	21937			13.5	28.765		
			7	33376		10	9	39.233		
			8	35683			18	48.35		
			9	33793			27	58.202		
			10	45984		15	9	54.345		
			11	44755			13.5	58.977		
			12	47055			27	72.939		
			13	58378		20	13.5	73.828		
			14	59331			18	78.266		
			15	58828			36	96 447		

Table H-4. Recycled Concrete, RECON-4531-1-14-1

Site Rownum	Hole Id	San Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum
4531	1	14	1	13176	1	3	2.7	12.004
			2	14997			5.4	14.656
			3	15701			8.1	17.281
			4	20352		5	4.5	19.73
			5	21044			9	24.316
			6	21410			13.5	29.05
			7	33436		10	9	39.366
			8	34988			18	48.5
			9	31871			27	59.081
			10	42814		15	9	54.171
			11	42252			13.5	59.125
			12	45356			27	72.857
			13	53928		20	13.5	73.967
			14	55889			18	78.357
			15	56049			36	97.125

* Sigma sum is calculated from test data.

Table H-5. Recycled Concrete, RECON-4531-1-15-1										
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum		
4531	1	15	1	15699	1	3	2.7	12.042		
			2	17057			5.4	14.515		
			3	17707			8.1	17.291		
			4	22373		5	4.5	19.568		
			5	23582			9	24.373		
			6	23163			13.5	28.722		
			7	34615		10	9	39.349		
			8	36614			18	48.639		
			9	35491			27	58.476		
			10	46123		15	9	54.422		
			11	45862			13.5	59.214		
			12	49159			27	73.051		
			13	58724		20	13.5	74.01		
			14	61042			18	78.324		
			15	61984			36	96.122		

Table H-6. Recycled Concrete, RECON-4531-1-16-1

Site	Hole	Sample			Test		Sigma	Sigma
Rownum	ld	ld	No	Mr	No	Sigma3	dn	Sum
4531	1	16	1	17433	1	3	2.7	11.795
			2	17877			5.4	14.544
			3	19027			8.1	17.377
			4	25297		5	4.5	19.556
			5	25685			9	24.093
			6	26647			13.5	28.561
			7	40332		10	9	39.248
			8	41454			18	48.41
			9	40169			27	57.934
			10	49474		15	9	54.461
			11	49876			13.5	58.919
			12	54118			27	72.305
			13	62558		20	13.5	73.526
			14	64329			18	77.741
			15	64422			36	96.241

* Sigma sum is calculated from test data.

Table H-7. Recycled Concrete, RECON-4531-1-17-1										
Site Rownum	Hole Id	Sar Id	nple No	Mr	Test No	Sigma3	Sigma dn	Sigma Sum		
4531	1	17	1	15917	1	3	2.7	12.054		
			2	17061			5.4	14.599		
			3	17910			8.1	17.149		
			4	23521		5	4.5	19.614		
			5	24171			9	24.168		
			6	25050			13.5	28.961		
			7	37710		10	9	39.438		
			8	38357			18	48.668		
			9	36616			27	57.526		
			10	45097		15	9	54.297		
			11	45657			13.5	59.132		
			12	48467			27	72.52		
			13	57398		20	13.5	73.925		
			14	59060			18	78.214		
			15	58549			36	96.337		

* Sigma sum is calculated from test data.

For more information or a complete publication list, contact us at:

KENTUCKY TRANSPORTATION CENTER

176 Raymond Building University of Kentucky Lexington, Kentucky 40506-0281

> (859) 257-4513 (859) 257-1815 (FAX) 1-800-432-0719 www.ktc.uky.edu ktc@engr.uky.edu

The University of Kentucky is an Equal Opportunity Organization